6 results
Search Results
Now showing 1 - 6 of 6
Article Citation - WoS: 11Citation - Scopus: 12A Low Band Gap Polymer Based on Selenophene and Benzobis (thiadiazole)(Pergamon-elsevier Science Ltd, 2017) Abdulrazzaq, Mohammed; Ozkut, Merve Icli; Gokce, Gurcan; Ertan, Salih; Tutuncu, Esra; Cihaner, AtillaA new derivative of benzobis(thiadiazole) based donor-acceptor-donor type monomers, namely 4,7-di (selenophen-2-yl)benzo[1,2-c;4,5-c']bis[1,2,5]thiadiazole (SeBTSe), was synthesized and its polymerization was carried out successfully via electrochemical polymerization in an electrolyte solution of 0.1 M tetrabutylammonium hexafluorophosphate dissolved in dichloromethane. The monomer SeBTSe is a deep red chromophore and it has four redox states: one oxidation, one neutral and two reduction states. The electrochemical behaviour of the corresponding polymer called PSeBTSe was studied by cyclic and differential pulse voltammetry. There is a good agreement between electrochemical (0.62-0.66 eV) and optical (0.63 eV) bandgaps of the polymer. Like the monomer, the ambipolar polymer has four redox states and electrochromic properties: gray beige at neutral state, smoky azurite at oxidized state, beige at first reduced state and dark beige at second reduced state. (C) 2017 Elsevier Ltd. All rights reserved.Article Citation - WoS: 5Citation - Scopus: 5Designing a Solution Processable Poly(3,4-Ethylenedioxyselenophene) Analogue(Amer Chemical Soc, 2018) Ertan, Salih; Cihaner, AtillaA new derivative (EDOS-POSS) of 3,4-ethylenedioxyselenophene integrated with alkyl-substituted polyhedral oligomeric silsesquioxane (POSS) cage was synthesized and characterized. The electroactive monomer was successfully polymerized via both chemical and electrochemical methods. The obtained polymer called PEDOS-POSS was solution-processable and soluble in common organic solvents like tetrahydrofuran, toluene, dichloromethane, and chloroform. PEDOS-POSS polymer exhibited electrochromic behavior: pure blue when neutralized and highly transparent when oxidized. When compared to the parent PEDOS (1.40 eV with lambda(max) = 673 nm), PEDOS-POSS polymer film has a somewhat higher band gap (1.50 eV with lambda(max) = 668 and 724 nm). Also, PEDOS POSS exhibited high optical contrast ratio (59%) and coloration efficiency (593 cm(2)/C for 95% switching) with a low switching time (0.7 s) due to the presence of POSS cage in the polymer backbone. In addition, PEDOS-POSS polymer film was highly robust and stable under ambient conditions (without purging the electrolyte solution with inert gas). Polymer films demonstrated high electrochemical stability; for example, it retained 76% of its electroactivity after 5000 cycles. Furthermore, the polymers exhibited fluorescent properties and exhibited a reddish orange emission centered about at 640 nm. Based on the findings, to the best of our knowledge, it can be concluded that the polymers are the first examples of soluble and fluorescent PEDOS derivatives. These promising properties make PEDOS-POSS polymer a potential material for bioapplications like imaging the cancer cells as well as optoelectronic applications.Article Citation - WoS: 24Citation - Scopus: 23Synthesis and Electrochemical Polymerization of D-A Type Monomers With Thieno [3,4-c] Pyrrole-4,6 Acceptor Unit(Elsevier Sci Ltd, 2018) Cakal, Deniz; Ertan, Salih; Cihaner, Atilla; Onal, Ahmet M.In this study, three new donor-acceptor-donor type monomers bearing 1,3-dibromo-5-(2-ethylhexyl)-4H-thieno [3,4-c]pyrrole- 4,6(5H)-dione (A) as an acceptor unit and thiophene, 3,4-ethylenedioxythiophene (EDOT) and 3,3-didecy1-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine (didecyl-ProDOT) as donor units were synthesized via Stille cross-coupling reaction and their electrochemical polymerization by repetitive cycling was reported. The electrochemical and optical properties of the monomers ((5-(2-ethyl-liexyl)-1,3-di(thienyl-2-yl)-4H-thienolr-3,4-cl pyrrole-4,6(5H)-dione (TAT), 1,3-bis(2,3-dihydrothieno[3,4-1)] (1,4]dioicin-5-yl)-5-(2-ethylhexyl)-4H-thieno(3,4-c) pyrrole-4,6-(5H)-dione (EAE) and 1,3-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-1)111,41-dioxepin-6-yl)-5-(2-ethylhexyl)-4H-thieno[3,4-apyrrole-4,6(5H)-dione (PAP)) and their corresponding polymers called PTAT, PEAE and PPAP were investigated and it was found that EDOT units containing monomer and polymer (EAE and PEAE) have lower oxidation potentials and lower band gap value as compared to didecyl-ProDOT and thiophene units containing monomers and polymers (PAP, TAT and PPAP, PTAT). Spectroelectrochemical investigations conducted on electrochemically obtained polymer films revealed that polymer films exhibited electrochromic behaviors: brick red to gray for PTAT, blue/violet to highly sky blue for PEAE and blue to highly light blue for PPAP in their neutral and oxidized states, respectively. Moreover, PAP was also polymerized chemically using FeC13 as an oxidizing agent. Both chemically and electrochemically obtained PPAP were found to be soluble in some organic solvents and their dichloromethane solutions can be reversibly oxidized and reduced using antimony pentachloride and hydrazine hydrate solutions, respectively.Article Citation - WoS: 8Citation - Scopus: 8Improvement of Optical Properties and Redox Stability of Poly(3,4-Ethylenedioxythiophene)(Elsevier Sci Ltd, 2018) Ertan, Salih; Cihaner, AtillaIn order to improve the optical properties and redox stability of poly(3,4-ethylenedioxythiophene) (PEDOT) without changing its electrochemical and electrochromic behaviour, it was supported with alkyl-substituted polyhedral oligomeric silsesquioxane (POSS) cage. The corresponding copolymers were obtained electrochemically via potentiostatic or potentiodynamic methods and compared to the parent homopolymers. Electrochemical polymerization of EDOT and POSS containing EDOT called EDOT-POSS in various monomer feed ratios was performed in an electrolyte solution of 0.1 M TBAPF(6) dissolved in a mixture of dichloromethane and acetonitrile (1/3: v/v). Just as PEDOT, the copolymers represented the similar band gap (1.61 eV), redox and electrochromic behaviors. On the other hand, when compared to the parent PEDOT, the presence of POSS cages in the copolymer backbone improved the redox stability and optical properties of PEDOT such as higher percent transmittance change (65% at 621 nm), higher transparency at oxidized state, lower switching time (similar to 1.0 s) and higher coloration efficiency (463 cm(2)/C for 95% switching) as well as higher electrochemical stability (86% of its electroactivity retains after 1750 cycles under ambient conditions).Article Citation - WoS: 11Citation - Scopus: 11Electrochemical and Optical Properties of Substituted Phthalimide Based Monomers and Electrochemical Polymerization of 3,4-Ethylenedioxythiophene Oligomeric Silsesquioxane (poss) Analogue(Elsevier Sci Ltd, 2019) Cakal, Deniz; Ertan, Salih; Cihaner, Atilla; Onal, Ahmet M.A new series of donor-acceptor-donor type trimeric monomers bearing substituted phthalimide units as acceptor units and thiophene and 3,4-ethylenedioxythiophene (EDOT) as donor units was synthesized and characterized. The strength of acceptor units and intramolecular charge transfer between donor and acceptor units were investigated by using electrochemical and optical methods. The main advantage of phthalimide unit over other acceptor units is the ease of its functionalizability. Thus, utilizing this property, a phthalimide derivative (E2P-POSS) bearing polyhedral oligomeric silsesquioxane (POSS) cage was introduced successfully with EDOT and polymerized electrochemically. The corresponding electroactive polymer, PE2P-POSS, has a band gap of 1.72 eV and is an electrochromic polymer: gray when neutralized and eggplant purple when oxidized.Article Citation - WoS: 19Citation - Scopus: 18Design and Synthesis of New 4,4′-Difluoro Based Electrochromic Polymers(Pergamon-elsevier Science Ltd, 2013) Algi, Melek Pamuk; Tirkes, Seha; Ertan, Salih; Ergun, Emine Gul Cansu; Cihaner, Atilla; Algi, FatihDesign, synthesis, optical and electrochemical properties of two novel 4,4'-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) based donor-acceptor compounds, 1 and 2, are reported in order to elucidate the structure-property relationships in BODIPY based materials. Importantly, these compounds provide opportunity to be used as crosslinkers, since they have three electroactive donor sides. Furthermore, these compounds are polymerized successfully via electrochemical polymerization. The corresponding polymers (P1 and P2) are also characterized by using electrochemical and optical methods in monomer-free electrolyte solutions. It is found that both polymers P1 and P2 exhibit reversible oxidation peaks with half wave potentials of 0.70 V and 0.98 V vs. Ag/AgCl, respectively, and they have low optical band gaps (1.88 eV for P1 and 1.72 eV for P2). It is also noted that the polymers exhibit multielectrochromic properties upon doping: P1 can be switched from pink color in the neutral state to blue color in the oxidized state and P2 can be switched from transmissive pink color when neutralized to transmissive blue color when oxidized. (C) 2013 Elsevier Ltd. All rights reserved.

