Designing a Solution Processable Poly(3,4-ethylenedioxyselenophene) Analogue

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Chemical Soc

Research Projects

Organizational Units

Organizational Unit
Chemical Engineering
(2010)
Established in 2010, and aiming to train the students with the capacity to meet the demands of the 21st Century, the Chemical Engineering Department provides a sound chemistry background through intense coursework and laboratory practices, along with fundamental courses such as Physics and Mathematics within the freshman and sophomore years, following preparatory English courses.In the final two years of the program, engineering courses are offered with laboratory practice and state-of-the-art simulation programs, combining theory with practice.

Journal Issue

Abstract

A new derivative (EDOS-POSS) of 3,4-ethylenedioxyselenophene integrated with alkyl-substituted polyhedral oligomeric silsesquioxane (POSS) cage was synthesized and characterized. The electroactive monomer was successfully polymerized via both chemical and electrochemical methods. The obtained polymer called PEDOS-POSS was solution-processable and soluble in common organic solvents like tetrahydrofuran, toluene, dichloromethane, and chloroform. PEDOS-POSS polymer exhibited electrochromic behavior: pure blue when neutralized and highly transparent when oxidized. When compared to the parent PEDOS (1.40 eV with lambda(max) = 673 nm), PEDOS-POSS polymer film has a somewhat higher band gap (1.50 eV with lambda(max) = 668 and 724 nm). Also, PEDOS POSS exhibited high optical contrast ratio (59%) and coloration efficiency (593 cm(2)/C for 95% switching) with a low switching time (0.7 s) due to the presence of POSS cage in the polymer backbone. In addition, PEDOS-POSS polymer film was highly robust and stable under ambient conditions (without purging the electrolyte solution with inert gas). Polymer films demonstrated high electrochemical stability; for example, it retained 76% of its electroactivity after 5000 cycles. Furthermore, the polymers exhibited fluorescent properties and exhibited a reddish orange emission centered about at 640 nm. Based on the findings, to the best of our knowledge, it can be concluded that the polymers are the first examples of soluble and fluorescent PEDOS derivatives. These promising properties make PEDOS-POSS polymer a potential material for bioapplications like imaging the cancer cells as well as optoelectronic applications.

Description

ertan, salih/0000-0001-8852-1879

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Citation

4

WoS Q

Q1

Scopus Q

Source

Volume

51

Issue

21

Start Page

8698

End Page

8704

Collections