2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 22Citation - Scopus: 27Influence of prosthesis type and material on the stress distribution in bone around implants: A 3-dimensional finite element analysis(Elsevier Taiwan, 2011) Meric, Gokce; Erkmen, Erkan; Kurt, Ahmet; Tunc, Yahya; Eser, AtilimBackground/purpose: The design and materials of a prosthesis affect the loading of dental implants and deformation of the bone. The aim of the study was to evaluate the effects of prosthesis design and materials on the stress distribution of implant-supported prostheses. Materials and methods: A 3-dimensional finite element analysis method was selected to evaluate the stress distribution in the bone. Three different models were designed as follows: a 3-unit implant-supported fixed partial denture (FPD) composed of a metal framework and porcelain veneer with (M2) or without a cantilevered extension (M1) and an FPD composed of a fiber-reinforced composite (FRC) framework and a particulate composite veneer without a cantilevered extension (M3). In separate load cases, 300-N vertical, 150-N oblique, and 60-N horizontal forces were applied to the prostheses in the models. von Mises stress values in the cortical and cancellous bone were calculated. Results: In cortical bone, the highest von Mises stresses were noted in the M2 Model with a vertical load; whereas, higher stresses were observed in the M1 Model with horizontal and oblique loads. The lowest stress values were determined in the M3 Model for all loading conditions. In cancellous bone, decreased stress values were found with all 3 models under the applied loads. Conclusions: Prosthesis design and materials affect the load-transmission mechanism. Although additional experimental and clinical studies are needed, FRC FPDs can be considered a suitable alternative treatment choice for implant-supported prostheses. Within the limitations of the study, the 3-unit FPD supported by 2 implants with a cantilevered extension revealed acceptable stress distributions. Copyright (C) 2011, Association for Dental Sciences of the Republic of China. Published by Elsevier Taiwan LLC. All rights reserved.Article Citation - WoS: 14Citation - Scopus: 20Biomechanical Comparison of Two Different Collar Structured Implants Supporting 3-Unit Fixed Partial Denture: a 3-D Fem Study(Taylor & Francis Ltd, 2012) Meric, Gokce; Erkmen, Erkan; Kurt, Ahmet; Eser, Atilim; Oezden, Ahmet UtkuObjective. The purpose of the study was to compare the effects of two distinct collar geometries of implants on stress distribution in the bone as well as in the fixture-abutment complex, in the framework and in the veneering material of 3-unit fixed partial denture (FPD). Material and methods. The 3-dimensional finite element analysis method was selected to evaluate the stress distribution in the system composed of 3-unit FPD supported by two different dental implant systems with two distinct collar geometries; microthread collar structure (MCS) and non-microthread collar structure (NMCS). In separate load cases, 300 N vertical, 150 N oblique and 60 N horizontal, forces were utilized to simulate the multidirectional chewing forces. Tensile and compressive stress values in the cortical and cancellous bone and von Mises stresses in the fixture-abutment complex, in the framework and veneering material, were simulated as a body and investigated separately. Results. In the cortical bone lower stress values were found in the MCS model, when compared with NMCS. In the cancellous bone, lower stress values were observed in the NMCS model when compared with MCS. In the implant-abutment complex, highest von Mises stress values were noted in the NMCS model; however, in the framework and veneering material, highest stress values were calculated in MCS model. Conclusions. MCS implants when compared with NMCS implants supporting 3-unit FPDs decrease the stress values in the cortical bone and implant-abutment complex. The results of the present study will be evaluated as a base for our ongoing FEA studies focused on stress distribution around the microthread and non-microthread collar geometries with various prosthesis design.

