Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Structural and Optical Properties of Thermally Evaporated (gase)0.75-(gas)0.25 Thin Films
    (Elsevier Gmbh, 2021) Isik, M.; Işık, Mehmet; Emir, C.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    GaSe and GaS binary semiconducting compounds are layered structured and have been an attractive research interest in two-dimensional material research area. The present paper aims at growing (GaSe)0.75 - (GaS)0.25 (or simply GaSe0.75S0.25) thin film and investigating its structural and optical properties. Thin films were prepared by thermal evaporation technique using evaporation source of its single crystal grown by Bridgman method. The structural properties were revealed using x-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. XRD pattern and EDS analyses indicated that thin films annealed at 300 ?C were successfully deposited and its structural characteristics are well-consistent with its single crystal form. Surface morphology was studied by means of SEM and AFM measurements. Optical properties were investigated by transmission and Raman spectroscopy techniques. Raman spectrum exhibited three peaks around 172, 242 and 342 cm-1. Analyses of transmission spectrum revealed the direct band gap energy as 2.34 eV. The mixed compounds of GaSe0.75S0.25 were prepared for the first time in a thin film form and the results of the present paper would provide valuable information to research area in which layered compounds have been studied in detail.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Improvement of Electrical Characteristics of Snse/Si Heterostructure by Integration of Si Nanowires
    (Elsevier, 2021) Coskun, E.; Gullu, H. H.; Emir, C.; Parlak, M.
    In this study, the effects of the nanowire geometry on Si wafer substrate were investigated for the SnSe/Si-nanowire heterojunction device and the obtained results were compared with the one fabricated on planar Si surface. Nanowires on Si surface were produced by metal-assisted etching method and the SnSe film layer was deposited by thermal evaporation technique. On both Si and glass surfaces, deposited film shows polycrystalline and single SnSe phase. From optical transmission measurements, optical band gap of this film was determined as 1.36 eV in a good agreement with the literature. All SnSe/Si heterostructures were found in a p-n diode behavior and the ideality factor and series resistance values were calculated as 2.40, 547 Omega, and 3.71, 1.57 x 10(3) Omega, for SnSe/Si-nanowire and SnSe/Si heterojunctions, respectively. As a result, an improvement in device characteristics concerning the planar Si structure was found by utilizing Si nanowire structure.