Improvement of electrical characteristics of SnSe/Si heterostructure by integration of Si nanowires

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

In this study, the effects of the nanowire geometry on Si wafer substrate were investigated for the SnSe/Si-nanowire heterojunction device and the obtained results were compared with the one fabricated on planar Si surface. Nanowires on Si surface were produced by metal-assisted etching method and the SnSe film layer was deposited by thermal evaporation technique. On both Si and glass surfaces, deposited film shows polycrystalline and single SnSe phase. From optical transmission measurements, optical band gap of this film was determined as 1.36 eV in a good agreement with the literature. All SnSe/Si heterostructures were found in a p-n diode behavior and the ideality factor and series resistance values were calculated as 2.40, 547 Omega, and 3.71, 1.57 x 10(3) Omega, for SnSe/Si-nanowire and SnSe/Si heterojunctions, respectively. As a result, an improvement in device characteristics concerning the planar Si structure was found by utilizing Si nanowire structure.

Description

Coskun, Emre/0000-0002-6820-3889

Keywords

Nanowire, Heterojunction, SnSe, Thin film

Turkish CoHE Thesis Center URL

Citation

4

WoS Q

Scopus Q

Source

Volume

604

Issue

Start Page

End Page

Collections