3 results
Search Results
Now showing 1 - 3 of 3
Article Fitting a Recurrent Dynamical Neural Network To Neural Spiking Data: Tackling the Sigmoidal Gain Function Issues(Tubitak Scientific & Technological Research Council Turkey, 2019) Doruk, Reşat ÖzgürThis is a continuation of a recent study (Doruk RO, Zhang K. Fitting of dynamic recurrent neural networkmodels to sensory stimulus-response data. J Biol Phys 2018; 44: 449-469), where a continuous time dynamical recurrentneural network is fitted to neural spiking data. In this research, we address the issues arising from the inclusion ofsigmoidal gain function parameters to the estimation algorithm. The neural spiking data will be obtained from the samemodel as that of Doruk and Zhang, but we propose a different model for identification. This will also be a continuoustime recurrent neural network, but with generic sigmoidal gains. The simulation framework and estimation algorithmsare kept similar to that of Doruk and Zhang so that we can have a solid base to compare the results. We evaluatethe estimation performance in two different ways. First, we compare the firing rate responses of the original and theestimated model. We find that responses of both models to the same stimuli are similar. Secondly, we evaluate variationsof the standard deviations of the estimates against a number of samples and stimulus parameters. They show a similarpattern to that of Doruk and Zhang. We thus conclude that our model serves as a reasonable alternative provided thatfiring rate is the response of interest (to any stimulus).Article Neuron Modeling: Estimating the Parameters of a Neuron Model From Neural Spiking Data(2018) Doruk, Reşat ÖzgürWe present a modeling study aiming at the estimation of the parameters of a single neuron model from neuralspiking data. The model receives a stimulus as input and provides the firing rate of the neuron as output. The neuralspiking data will be obtained from point process simulation. The resultant data will be used in parameter estimationbased on the inhomogeneous Poisson maximum likelihood method. The model will be stimulated by various forms ofstimuli, which are modeled by a Fourier series (FS), exponential functions, and radial basis functions (RBFs). Tabulatedresults presenting cases with different sample sizes (# of repeated trials), stimulus component sizes (FS and RBF),amplitudes, and frequency ranges (FS) will be presented to validate the approach and provide a means of comparison.The results showed that regardless of the stimulus type, the most effective parameter on the estimation performanceappears to be the sample size. In addition, the lowest variance of the estimates is obtained when a Fourier series stimulusis applied in the estimation.Research Project En Iyi Tasarım Yöntemi Kullanarak Nöron Modellemesine Yönelik Algoritma Geliştirilmesi(2021) Doruk, Reşat ÖzgürBu projenin hedefi dinamik sinirsel ağ model parametrelerinin verimli bir şekilde kestiriminin yapılabilmesi için uyarlamalı/adaptif bir uyaran üretimini gerçekleştiren bir sistemi geliştirmektir. Önerilen çalışma parametre kestirimi ve en iyilemeli uyaran tasarımı yapabilmek için gerekli algoritmaları geliştirmeye yönelik olup herhangi bir canlı hayvan ya da insanlar üzerinde deney içermemektedir. İlgili parametre kestirim çalışmasının yapılabilmesi için uyaran ve yanıt veri çiftine gereksinim duyulmaktadır. Burada uyaran sürekli zamanda tanımlı ve genliği belli bir işarettir. Buna karşın alınan cevap modelin temsil ettiği gerçek sinir hücresinin çalışma prensipleri gereği genlik değeri belli olmayan ve çeşitli zaman anlarında toplanmış bir atım (spayk) dizisidir. Bu durum parametre kestiriminde türlü güçlükler çıkarabilmektedir. Hem yüksek hesaplama karmaşıklığı hem de model yapısına göre değişkesi (varyans) yüksek kestirimler karşımıza çıkabilir. Bu durum dinamik nitelikli modellerde daha da öne çıkmaktadır. Bu noktada önemli olabilecek hususların başında uyaranın profili (zamana bağlı değişimi) gelmektedir. Uyaran biçiminin belirlenmesinde en önemli husus neden olduğu yanıtın model parametreleri hakkında ne düzeyde bilgi içerdiğidir. Uyaranın profilinin en iyileme yoluyla en yoğun bilgi içeriğine sahip olmasının sağlanabileceği daha önceki çalışmalarda gösterilmiştir. Ancak bu yaklaşımların sinir hücresi modellenmesine ilişkin uygulamaları sınırlı kalmıştır. Bunlar ya statik ileri beslemeli genel sinirsel ağ denklemleri kullanılarak ya da Wilson-Cowan tipi modeller kullanılarak yapılmışlardır. Söz konusu çalışmalarda Fisher Enformasyon Matrisi'nin (Bilişim Matrisi) belli bir istatistiksel ölçütünü (A-Optimal, D-Optimal ya da F-Optimal gibi) en yüksek değere getiren ve zamanla değişken bir profil türetilmiştir. Enformasyon ya da Bilişim Matrisleri bir rastgele değişkenin bağımlı olduğu parametrelerle ilgili ne kadar bilgi içerdiğini gösteren istatistiksel ölçütler olduklarından hedeflenen amaçlarla kullanımı uygun görülmektedir. Bu projede de Fisher Enformasyon Matrisinin D-Optimal ölçütü kullanılarak Fourier Serisi formunda ki bir uyaranın kendi parametreleri hesaplanacak ve arkasından değiştirilmiş bir Wilson-Cowan modeline uygulanarak parametre kesitirimi yapılacaktır. Kestirim işleminde birleşik en yüksek olabilirlik yöntemi kullanılmaktadır. Yapılan benzetimlerde doğru olduğu bilinen parametrelerle model çözüldükten sonra elde edilen ateşleme hızı verisi kullanılarak Poisson süreci benzetimi yapılacak ve elde edilen zamanlamalar algoritmaya atım dizisi biçiminde ki yanıt verisi olarak sağlanacaktır. Verilerin istatistiksel boyutu olması nedeniyle sağlıklı bir analiz yapılabilmesi amacıyla her benzetim 20 defa tekrarlanmaktadır. Analizler farklı koşullar içinde tekrarlanmaktadır. Bunlar farklı örnekleme sayısı, uyaran derecesi (alt parça sayısı), taban frekans ve genlik değerleridir.


