2 results
Search Results
Now showing 1 - 2 of 2
Conference Object Citation - WoS: 98Citation - Scopus: 101Experimental Investigation of Co Tolerance in High Temperature Pem Fuel Cells(Pergamon-elsevier Science Ltd, 2018) Devrim, Yilser; Albostan, Ayhan; Devrim, HuseyinIn the present work, the effect of operating a high temperature proton exchange membrane fuel cell (HT-PEMFC) with different reactant gases has been investigated throughout performance tests. Also, the effects of temperature on the performance of a HT-PEMFC were analyzed at varying temperatures, ranging from 140 degrees C to 200 degrees C. Increasing the operating temperature of the cell increases the performance of the HT-PEMFC. The optimum operating temperature was determined to be 160 degrees C due to the deformations occurring in the cell components at high working temperatures. To investigate the effects of CO on the performance of HT-PEMFC, the CO concentration ranged from 1 to 5 vol %. The current density at 0.6 V decreases from 0.33 A/cm(2) for H-2 to 0.31 A/cm(2) for H-2 containing 1 vol % CO, to 0.29 A/cm(2) for 3 vol % CO, and 0.25 A/cm(2) for 5 vol % CO, respectively. The experimental results show that the presence of 25 vol % CO2 or N-2 has only a dilution effect and therefore, there is a minor impact on the HT-PEMFC performance. However, the addition of CO to H-2/N-2 or H-2/CO2 mixtures increased the performance loss. After longterm performance test for 500 h, the observed voltage drop at constant current density was obtained as similar to 14.8% for H-2/CO2/CO (75/22/3) mixture. The overall results suggest that the anode side gas mixture with up to 5 vol % CO can be supplied to the HT-PEMFC stack directly from the reformer. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Article Citation - WoS: 55Citation - Scopus: 63Development of 500 W Pem Fuel Cell Stack for Portable Power Generators(Pergamon-elsevier Science Ltd, 2015) Devrim, Yilser; Devrim, Huseyin; Eroglu, InciPolymer Electrolyte Membrane Fuel Cell (PEMFC) portable power generators are gaining importance in emergency applications. In this study, an air-cooled PEMFC stack was designed and fabricated for net 500 W power output. Gas Diffusion Electrodes (GDE's) were manufactured by ultrasonic spray coating technique. Stack design was based on electrochemical data obtained at 0.60 V was 0.5 A/cm(2) from performance tests of a single cell having the same membrane electrode assemblies (MEA) that had an active area of 100 cm(2). Graphite bipolar plates were designed and machined by serpentines type flow. The stack comprising of 24 cells was assembled with external fixing plates. The stack temperature was effectively regulated by the cooling fan based on on-off control system. A maximum power of 647 W was obtained from the stack. The PEMFC stack was stable during start-up and shutdown cycling testing for 7 days at 65 degrees C in H-2/air at a constant cell voltage. Copyright (c) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

