Development of 500 W PEM fuel cell stack for portable power generators

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

Polymer Electrolyte Membrane Fuel Cell (PEMFC) portable power generators are gaining importance in emergency applications. In this study, an air-cooled PEMFC stack was designed and fabricated for net 500 W power output. Gas Diffusion Electrodes (GDE's) were manufactured by ultrasonic spray coating technique. Stack design was based on electrochemical data obtained at 0.60 V was 0.5 A/cm(2) from performance tests of a single cell having the same membrane electrode assemblies (MEA) that had an active area of 100 cm(2). Graphite bipolar plates were designed and machined by serpentines type flow. The stack comprising of 24 cells was assembled with external fixing plates. The stack temperature was effectively regulated by the cooling fan based on on-off control system. A maximum power of 647 W was obtained from the stack. The PEMFC stack was stable during start-up and shutdown cycling testing for 7 days at 65 degrees C in H-2/air at a constant cell voltage. Copyright (c) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Description

DEVRIM, YILSER/0000-0001-8430-0702; Eroglu, Inci/0000-0002-6635-3947

Keywords

Proton exchange membrane, PEM fuel cell, Stack, Fuel cell system, MEA

Turkish CoHE Thesis Center URL

Fields of Science

Citation

52

WoS Q

Q1

Scopus Q

Source

Volume

40

Issue

24

Start Page

7707

End Page

7719

Collections