Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 17
    Citation - Scopus: 24
    Use of the Iqrf Technology in Internet-Of Smart Cities
    (Ieee-inst Electrical Electronics Engineers inc, 2020) Bouzidi, Mohammed; Dalveren, Yaser; Cheikh, Faouzi Alaya; Derawi, Mohammad
    In recent years, there has been a growing interest in building smart cities based on the Internet of Things (IoT) technology. However, selecting a low-cost IoT wireless technology that enables low-power connectivity remains one of the key challenges in integrating IoT to smart cities. In this context, the IQRF technology offers promising opportunities to provide cost-effective solutions. Yet, in the literature, there are limited studies on utilizing IQRF technology for smart city applications. Therefore, this study is aimed at increasing the awareness about the use of IQRF technology in IoT-based smart city development. For this purpose, a review of smart city architectures along with challenges/requirements in adopting IoT for smart cities is provided. Then, some of the common cost-effective IoT wireless technologies that enable low-power consumption are briefly presented. Next, the benefits of IQRF technology over other technologies are discussed by making theoretical comparisons based on technical documentations and reports. Moreover, the research efforts currently being undertaken by the authors as a part of ongoing project on the development of IoT-based smart city system in Gj & x00F8;vik Municipality, Norway, are conceptually introduced. Finally, the future research directions are addressed.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 7
    A Simplified Method Based on Rssi Fingerprinting for Iot Device Localization in Smart Cities
    (Ieee-inst Electrical Electronics Engineers inc, 2024) Dogan, Deren; Dalveren, Yaser; Kara, Ali; Derawi, Mohammad
    The Internet of Things (IoT) has significantly improved location-based services in smart cities, such as automated public transportation and traffic management. Estimating the location of connected devices is a critical problem. Low Power Wide Area Network (LPWAN) technologies are used for localization due to their low power consumption and long communication range. Recent advances in Machine Learning have made Received Signal Strength Indicator (RSSI) fingerprinting with LPWAN technologies effective. However, this requires a connection between devices and gateways or base stations, which can increase network deployment, maintenance, and installation costs. This study proposes a cost-effective RSSI fingerprinting solution using IQRF technology for IoT device localization. The region of interest is divided into grids to provide training locations, and measurements are conducted to create a training dataset containing RSSI fingerprints. Pattern matching is performed to localize the device by comparing the fingerprint of the end device with the fingerprints in the created database. To evaluate the efficiency of the proposed solution, measurements were conducted in a short-range local area ( $80\times 30$ m) at 868 MHz. In the measurements, four IQRF nodes were utilized to receive the RSSIs from a transmitting IQRF node. The performances of well-known ML classifiers on the created dataset are then comparatively assessed in terms of test accuracy, prediction speed, and training time. According to the results, the Bagged Trees classifier demonstrated the highest accuracy with 96.87%. However, with an accuracy of 95.69%, the Weighted k-NN could also be a reasonable option for real-world implementations due to its faster prediction speed (37615 obs/s) and lower training time (28.1 s). To the best of the authors' knowledge, this is the first attempt to explore the feasibility of the IQRF networks to develop a RSSI fingerprinting-based IoT device localization in the literature. The promising results suggest that the proposed method could be used as a low-cost alternative for IoT device localization in short-range location-based smart city applications.
  • Conference Object
    Internet-Of Smart Transportation Systems for Safer Roads
    (Ieee, 2020) Derawi, Mohammad; Dalveren, Yaser; Cheikh, Faouzi Alaya
    From the beginning of civilizations, transportation has been one of the most important requirements for humans. Over the years, it has been evolved to modern transportation systems such as road, train, and air transportation. With the development of technology, intelligent transportation systems have been enriched with Information and Communications Technology (ICT). Nowadays, smart city concept that integrates ICT and Internet-of-Things (IoT) have been appeared to optimize the efficiency of city operations and services. Recently, several IoT-based smart applications for smart cities have been developed. Among these applications, smart services for transportation are highly required to ease the issues especially regarding to road safety. In this context, this study presents a literature review that elaborates the existing IoT-based smart transportation systems especially in terms of road safety. In this way, the current state of IoT-based smart transportation systems for safer roads are provided. Then, the current research efforts undertaken by the authors to provide an IoT-based safe smart traffic system are briefly introduced. It is emphasized that road safety can be improved using Vehicle-to-Infrastructure (V21) communication technologies via the cloud (Infrastructure-to-Cloud - I2C). Therefore, it is believed that this study offers useful information to researchers for developing safer roads in smart cities.