11 results
Search Results
Now showing 1 - 10 of 11
Article Citation - WoS: 14Citation - Scopus: 14Low Temperature Thermoluminescence Behaviour of Y2o3< Nanoparticles(Elsevier, 2019) Delice, S.; Isik, M.; Gasanly, N. M.Y2O3 nanoparticles were investigated using low temperature thermoluminescence (TL) experiments. TL glow curve recorded at constant heating rate of 0.4 K/s exhibits seven peaks around 19, 62, 91, 115, 162, 196 and 215 K. Activation energies and characteristics of traps responsible for observed curves were revealed under the light of results of initial rise analyses and T-max-T-stop experimental methods. Analyses of TL curves obtained at different stopping temperatures resulted in presence of one quasi-continuously distributed trap with activation energies increasing from 18 to 24 meV and six single trapping centers at 49, 117, 315, 409, 651 and 740 meV. Activation energies of all revealed centers were reported in the present paper. Structural characterization of Y2O3 nanoparticles was accomplished using X-ray diffraction and scanning electron microscopy measurements. (C) 2019 Chinese Society of Rare Earths. Published by Elsevier B.V. All rights reserved.Article Citation - WoS: 2Citation - Scopus: 2Trap Distribution in Agin5s8< Single Crystals: Thermoluminescence Study(Pergamon-elsevier Science Ltd, 2018) Delice, S.; Işık, Mehmet; Isik, M.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringDistribution of shallow trap levels in AgIn5S8 crystals has been investigated by thermoluminescence (TL) measurements performed below room temperature (10-300 K). One broad TL peak centered at 33 K was observed as constant heating rate of 0.2 K/s was employed for measurement. The peak shape analysis showed that the TL curve could consist of several individual overlapping TL peaks or existence of quasi-continuous distributed traps. Therefore, TL experiments were repeated for different stopping temperatures (T-stop) between 10 and 34 K with constant heating rate of 0.2 K/s to separate the overlapping TL peaks. The E-t vs T-stop indicated that crystal has quasi-continuously distributed traps having activation energies increasing from 13 to 41 meV. Heating rate effect on trapped charge carriers was also investigated by carrying out the TL. experiments with various heating rates between 0.2 and 0.6 K/s for better comprehension of characteristics of existed trap levels. Analyses indicated that the trap levels exhibited the properties of anomalous heating rate behavior which means the TL intensity and area under the TL peak increase with increasing heating rate.Article Citation - WoS: 19Citation - Scopus: 20Optical characteristics of Bi12SiO20 single crystals by spectroscopic ellipsometry(Elsevier Sci Ltd, 2020) Isik, M.; Delice, S.; Nasser, H.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.Structural and optical characteristics of Bi12SiO20 single crystal grown by the Czochralski method were investigated by virtue of X-ray diffraction (XRD) and spectroscopic ellipsometry measurements. XRD analysis indicated that the studied crystal possesses cubic structure with lattice parameters of a = 1.0107 nm. Spectral dependencies of several optical parameters like complex dielectric constant, refractive index, extinction and absorption coefficients were determined using ellipsometry experiments performed in the energy region of 1.2-6.2 eV. The energy band gap of Bi12SiO20 crystals was found to be 3.25 eV by utilizing absorption coefficient analysis. Moreover, critical point energies were calculated as 3.54, 4.02, 4.82 and 5.58 eV from analyses of the second energy derivative spectra of the complex dielectric constant.Article Citation - WoS: 42Citation - Scopus: 47Structural and Temperature-Dependent Optical Properties of Thermally Evaporated Cds Thin Films(Elsevier Sci Ltd, 2019) Isik, M.; Gullu, H. H.; Delice, S.; Parlak, M.; Gasanly, N. M.In this work, structural and temperature dependent optical properties of thermally evaporated CdS thin films were investigated. X-ray diffraction, energy dispersive spectroscopy and Raman spectroscopy experiments were carried out to characterize the thin films and obtain information about the crystal structure, atomic composition, surface morphology and vibrational modes. Temperature-dependent transmission measurements were performed in between 10 and 300 K and in the spectral range of 400-1050 nm. The analyses of transmittance spectra were accomplished by two different methods called as the absorption coefficient and the derivative spectrophotometry analyses. All evaluated band gap energy values at each studied temperature were in good agreement with each other depending on the applied analyses techniques. Room temperature gap energy values were found around 2.39 eV and 2.40 eV from absorption coefficient and derivative spectrophotometry analyses, respectively. Band gap energy depending on the sample temperature was studied under the light of two different models to investigate average phonon energy, electron phonon coupling parameter and the rate of change of band gap energy with temperature.Article Citation - WoS: 4Citation - Scopus: 4Study on Thermoluminescence of Tlins2 Layered Crystals Doped With Pr(Elsevier Sci Ltd, 2018) Delice, S.; Isik, M.; Gasanly, N. M.Praseodymium (Pr) doped TlInS2 crystals were studied by means of thermoluminescence (TL) measurements performed below room temperature with various heating rates. Detected TL signal exhibited glow curve consisting in overlapping two TL peaks at temperatures of 35 K (peak A) and 48 K (peak B) for 0.6 K/s heating rate. TL curve was analyzed with curve fitting and initial rise methods. Both of the applied methods resulted in consistent activation energies of 19 and 45 meV. The revealed trap levels were found to be dominated by mixed order of kinetics. Various heating rate dependencies of TL glow curves were also investigated and it was found that while peak A shows usual behavior, peak B exhibits anomalous heating rate behavior. Distribution of trap levels was explored using an experimental method called as T-max-T-stop method. Quasi-continuous distributions with increasing activation energies from 19 to 29 meV (peak A) and from 45 to 53 meV (peak B) were ascribed to trap levels. Effect of Pr doping on the TL response of undoped TlInS2 crystals was discussed in the paper.Article Citation - WoS: 20Citation - Scopus: 24Temperature Dependence of Band Gaps in Sputtered Snse Thin Films(Pergamon-elsevier Science Ltd, 2019) Delice, S.; Isik, M.; Gullu, H. H.; Terlemezoglu, M.; Surucu, O. Bayrakli; Parlak, M.; Gasanly, N. M.Temperature-dependent transmission experiments were performed for tin selenide (SnSe) thin films deposited by rf magnetron sputtering method in between 10 and 300 K and in the wavelength region of 400-1000 nm. Transmission spectra exhibited sharp decrease near the absorption edge around 900 nm. The transmittance spectra were analyzed using Tauc relation and first derivative spectroscopy techniques to get band gap energy of the SnSe thin films. Both of the applied methods resulted in existence of two band gaps with energies around 1.34 and 1.56 eV. The origin of these band gaps was investigated and it was assigned to the splitting of valence band into two bands due to spin-orbit interaction. Alteration of these band gap values due to varying sample temperature of the thin films were also explored in the study. It was seen that the gap energy values increased almost linearly with decreasing temperature as expected according to theoretical knowledge.Article Citation - WoS: 10Citation - Scopus: 10Temperature Dependent Band Gap in Sns2x< (x=0.5) Thin Films(Elsevier Sci Ltd, 2020) Delice, S.; Isik, M.; Gullu, H. H.; Terlemezoglu, M.; Surucu, O. Bayrakli; Gasanly, N. M.; Parlak, M.Structural and optical properties of SnS2xSe(2-2x) thin films grown by magnetron sputtering method were investigated for composition of x = 0.5 (SnSSe) in the present study. X-ray diffraction, energy dispersive X-ray spectroscopy, atomic force microscopy and scanning electron microscopy methods were used for structural characterization while temperature-dependent transmission measurements carried out at various temperatures in between 10 and 300 K were accomplished for optical investigations. X-ray diffraction pattern of studied composition presented peaks at positions which are between those of SnSe2 and SnS2. Transmittance spectra recorded at all applied temperatures were analyzed using well-known Tauc relation. Analyses revealed the direct band gap energy value of SnSSe thin films as 1.75 eV at room temperature. Change of band gap energy as a response to varying temperature were discussed in the study by utilizing Varshni relation. It was shown that variation of gap energy values was well-matched with the Varshni's empirical formula. Energy band gap at absolute zero and rate of change of band gap with temperature were found to be 1.783 eV and -2.1 x 10(-4) eV K-1, respectively.Article Citation - WoS: 29Citation - Scopus: 29Temperature Dependence of Band Gap of Ceo2 Nanoparticle Photocatalysts(Elsevier, 2023) Isik, M.; Delice, S.; Gasanly, N. M.Cerium dioxide (CeO2) have been one of the attractive photocatalysts material in recent years. Band gap and its change with temperature takes remarkable attention in the photocatalytic applications. The present work re-ported structural and temperature-dependent band gap characteristics of the CeO2 nanoparticles on glass sub-strate. X-ray diffraction (XRD) pattern exhibited nine peaks related to face-centered cubic structure. Crystallite size and micro-strain of the nanoparticles were determined from the analyses of XRD peaks. Scanning electron microscope (SEM) image indicated that CeO2 is in the form of nanoparticle with almost cube shaped of diameters in between 20 and 30 nm. Transmission measurements were performed in the 350-700 nm range at various temperatures between 10 and 300 K. The analyses of the transmission spectra showed that direct band gap energy decreases from 3.35 to 3.29 eV when sample temperature was raised from 10 K to room temperature. The temperature dependence of band gap energy was analyzed by Varshni expression. The analysis presented ab-solute zero and rate of change of band gap with temperature as 3.35 eV and-4.7 x 10-4 eV/K, respectively.Article Citation - WoS: 7Citation - Scopus: 6Investigation of Optical Characteristics of Pbmoo4 Single Crystals by Spectroscopic Ellipsometry(Elsevier Gmbh, 2022) Delice, S.; Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.In this study, we investigated the optical properties of PbMoO4 single crystals grown by Czochralski method. Spectroscopic ellipsometry measurements were carried out in the energy region between 1.0 and 5.5 eV at room temperature. X-ray diffraction measurements were achieved for structural characterization. The resulted pattern exhibited one peak belonging to (200) plane. Spectral variations of complex dielectric function, complex refractive index, absorption coefficient and dissipation function were obtained from the analyses of ellipsometry data. Real part of dielectric function increased up to 4.0 eV and then decreased suddenly at above this value. Zero frequency refractive index and dielectric constant were found to be 2.04 and 4.15, respectively. High frequency dielectric constant was determined to be 4.36. Optical band gap of PbMoO4 crystals was calculated as 3.09 eV. Two critical points with energies of 3.57 and 4.34 eV were estimated from the analyses of second-energy derivative spectra of real and imaginary parts of dielectric function. It was determined that [MoO4]2- complexes and charge transfer from Pb2+ ions into the neighboring Mo groups were responsible for these interband transitions. Dissipation function increased with increasing photon energy.Article Citation - WoS: 4Citation - Scopus: 3Investigation of Traps Distribution in Gas Single Crystals by Thermally Stimulated Current Measurements(Elsevier Sci Ltd, 2021) Delice, S.; Isik, M.; Gasanly, N. M.Thermally stimulated current (TSC) investigations of p-GaS (gallium sulfide) single crystals grown by Bridgman method were achieved by virtue of consecutive experiments carried out at various heating rates in between 0.4 and 1.0 K/s in the temperature range of 10-280 K. One single TSC peak around 148 K and overlapped, incomplete peaks in the end limit temperature of the experiments were observed in the spectrum recorded at constant heating rate of 1.0 K/s. Individual peak was analyzed utilizing curve fitting method. Existence of one trapping level centered at 0.11 eV was revealed by the analyses. Heating rate dependency of obtained TSC curve was also studied and it was shown that TSC intensity decreased besides increase of peak maximum temperature with heating rate. Characteristics feature of trapping mechanism was investigated in detail by employing different stopping temperature between 50 and 110 K. Analyses on T-m-T-stop dependency resulted in a presence of quasi-continuously distributed traps with activation energies ranging from 0.11 to 0.55 eV. The revealed trap was thought to be arising from intrinsic defect possibly created by V-Ga or antisite S-Ga.

