Investigation of traps distribution in GaS single crystals by thermally stimulated current measurements

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Thermally stimulated current (TSC) investigations of p-GaS (gallium sulfide) single crystals grown by Bridgman method were achieved by virtue of consecutive experiments carried out at various heating rates in between 0.4 and 1.0 K/s in the temperature range of 10-280 K. One single TSC peak around 148 K and overlapped, incomplete peaks in the end limit temperature of the experiments were observed in the spectrum recorded at constant heating rate of 1.0 K/s. Individual peak was analyzed utilizing curve fitting method. Existence of one trapping level centered at 0.11 eV was revealed by the analyses. Heating rate dependency of obtained TSC curve was also studied and it was shown that TSC intensity decreased besides increase of peak maximum temperature with heating rate. Characteristics feature of trapping mechanism was investigated in detail by employing different stopping temperature between 50 and 110 K. Analyses on T-m-T-stop dependency resulted in a presence of quasi-continuously distributed traps with activation energies ranging from 0.11 to 0.55 eV. The revealed trap was thought to be arising from intrinsic defect possibly created by V-Ga or antisite S-Ga.

Description

Gasanly, Nizami/0000-0002-3199-6686; Delice, Serdar/0000-0001-5409-6528; Isik, Mehmet/0000-0003-2119-8266

Keywords

Thermally stimulated current, GaS, Defects

Turkish CoHE Thesis Center URL

Citation

4

WoS Q

Q2

Scopus Q

Q1

Source

Volume

125

Issue

Start Page

End Page

Collections