Search Results

Now showing 1 - 10 of 12
  • Article
    Citation - WoS: 14
    Citation - Scopus: 14
    Low Temperature Thermoluminescence Behaviour of Y2o3< Nanoparticles
    (Elsevier, 2019) Delice, S.; Isik, M.; Gasanly, N. M.
    Y2O3 nanoparticles were investigated using low temperature thermoluminescence (TL) experiments. TL glow curve recorded at constant heating rate of 0.4 K/s exhibits seven peaks around 19, 62, 91, 115, 162, 196 and 215 K. Activation energies and characteristics of traps responsible for observed curves were revealed under the light of results of initial rise analyses and T-max-T-stop experimental methods. Analyses of TL curves obtained at different stopping temperatures resulted in presence of one quasi-continuously distributed trap with activation energies increasing from 18 to 24 meV and six single trapping centers at 49, 117, 315, 409, 651 and 740 meV. Activation energies of all revealed centers were reported in the present paper. Structural characterization of Y2O3 nanoparticles was accomplished using X-ray diffraction and scanning electron microscopy measurements. (C) 2019 Chinese Society of Rare Earths. Published by Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Shallow Trapping Centers in Bi12geo20 Single Crystals by Thermally Stimulated Current Measurements
    (Elsevier, 2022) Delice, S.; Isik, M.; Gasanly, N. M.
    Bi12GeO20 single crystals were investigated by thermally stimulated current (TSC) experiments performed in the temperature range of 10-290 K. Recorded TSC glow curve exhibited six distinctive peaks with maxima at around 90, 105, 166, 209, 246, 275 K. The analyses of the obtained glow curve were accomplished by curve fitting and initial rise methods. The analysis results were in good agreement that the TSC peaks appeared in the glow curve due to existence of trapping levels with activation energies of 0.10, 0.18, 0.23, 0.53, 0.68 and 0.73 eV. These trapping levels were estimated to be hole traps above valence band. The heating rate dependent TSC glow curves were also obtained for various rates between 0.30 and 0.45 K/s. The changes of TSC intensity, peak maximum temperature and full-widths-half-maximum values with heating rates were studied in detail. TSC intensity decreased and peak maximum temperature increased with increasing heating rate. Determination of defects and trapping/stimulation mechanism of those are significant for technological applications since local states in these materials take critical role for device performance.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 18
    Traps distribution in sol-gel synthesized ZnO nanoparticles
    (Elsevier, 2019) Delice, S.; Isik, M.; Gasanly, N. M.
    The distribution of shallow traps within the sol-gel synthesized ZnO nanoparticles was investigated using thermoluminescence (TL) experiments in the 10-300 K temperature range. TL measurements presented two overlapped peaks around 110 and 155 K. The experimental technique based on radiating the nanoparticles at different temperatures (T-exc.) between 60 and 125 K was carried out to understand the trap distribution characteristics of peaks. It was observed that peak maximum temperature shifted to higher values and activation energy (E-t) increased as irradiating temperature was increased. The E-t vs. T-exc. presented that ZnO nanoparticles have quasi-continuously distributed traps possessing activation energies increasing from 80 to 171 meV. (C) 2019 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 8
    Defect Characterization in Bi12geo20< Single Crystals by Thermoluminescence
    (Elsevier, 2021) Delice, S.; Isik, M.; Sarigul, N.; Gasanly, N. M.
    Bi12GeO20 single crystal grown by Czochralski method was investigated in terms of thermoluminescence (TL) properties. TL experiments were performed for various heating rates between 1 and 6 K/s in the temperature region of 300-675 K. One TL peak with peak maximum temperature of 557 K was observed in the TL spectrum as constant heating rate of 1 K/s was employed. Curve fitting, initial rise and variable heating rate methods were applied to calculate the activation energy of trap level corresponding to this TL peak. Analyses resulted in a presence of one trap center having mean activation energy of 0.78 eV. Heating rate characteristics of revealed trap center was also explored and theoretically well-known behavior that TL intensity decreases and peak maximum temperature increases with heating rates was observed for the trap level. Distribution of trapping levels was studied by thermally cleaning process for different T-stop between 425 and 525 K. Quasi-continuously distributed trapping levels were revealed with mean activation energies ranging from 0.78 to 1.26 eV. Moreover, absorption analysis revealed an optical transition taking place between a defect level and conduction band with an energy difference of 2.51 eV. These results are in good agreement for the presence of intrinsic defects above valence band in Bi12GeO20 crystals.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 6
    Thermoluminescence Properties and Trapping Parameters of Tlgas2 Single Crystals
    (Elsevier, 2022) Delice, S.; Isik, M.; Gasanly, N. M.
    TlGaS2 layered single crystals have been an attractive research interest due to their convertible characteristics into 2D structure. In the present paper, structural, optical and thermoluminescence properties of TlGaS2 single crystals were investigated. XRD pattern of the crystal presented five well-defined peaks associated with monoclinic unit cell. Band gap and Urbach energies were found to be 2.57 and 0.25 eV, respectively, from the analyses of transmittance spectrum. Thermoluminescence measurements were carried out above room temperature up to 660 K at various heating rates. One TL peak with peak maximum temperature of 573 K was obtained in the TL spectrum at 1.0 K/s. Curve fitting, initial rise and variable heating rate methods were used for analyses. All of those resulted in presence of a deep trapping level with activation energy around 0.92 eV. Heating rate dependence of the TL peak was also studied and it was indicated that peak maximum temperature shifted to higher temperatures besides decreasing TL intensity as the higher heating rates were employed.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 11
    Structural and Temperature-Tuned Optical Characteristics of Bi12geo20< Sillenite Crystals
    (Elsevier, 2020) Delice, S.; Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.
    Sillenite compounds exhibit unique photorefractive and electro-optic characteristics providing attractiveness to these materials in various optoelectronic applications. The present paper aims at investigating one of the members of this family. Structural and optical characteristics of Bi12GeO20 (BGO) were studied by means of x-ray diffraction, Raman spectroscopy and temperature-dependent transmittance measurements. Obtained transmission curves in the wavelength range of 350-1100 nm and at different applied temperatures between 10 and 300 K were employed to find out the absorption coefficient dependence on the photon energy. Tauc relation revealed the presence of an energy gap of 2.49 eV at room temperature. Extension of energy gap up to 2.57 eV due to decreased temperature down to 10 K was deduced by the analysis. In order to have reliable results, the energy gap value was corroborated by utilizing derivative spectral method and well consistency between both methods was indicated. Energy gap change with temperature was also discussed in the study using an empirical formula developed by Varshni. Energy gap at absolute zero and rate of band gap alteration with temperature were determined as 2.57 eV and -2.4 x 10(-4) eV K (- 1), respectively. Taking into account the previously reported studies on investigation of band gap characteristics of BGO, intrinsic Bi-Ge(3+) + V-O(+) defect could be responsible for the revealed energy value of 2.49 eV which is much lower than reported band gap energy of similar to 3.2 eV.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Investigation of Linear and Nonlinear Optical Properties of Pbwo4 Single Crystal
    (Elsevier, 2022) Delice, S.; Isik, M.; Gasanly, N. M.
    In this manuscript, PbWO4 single crystals having great importance for device applications were studied in terms of linear and nonlinear optical properties. For this purpose, transmission and reflection experiments were per-formed in the wavelength range of 350-1000 nm. X-ray diffraction analysis presented crystalline structure as scheelite type tetragonal. Spectral dependencies of absorption coefficient, skin depth, refractive index, dielectric function were reported. Optical band gap of the crystal was estimated as 3.25 eV from the Tauc and derivative spectral methods. Urbach, critical point, single oscillator and dispersion energies, static refractive index and dielectric constant were revealed for PbWO4 single crystal. First-and third-order nonlinear susceptibilities, and nonlinear refractive index were also computed for the studied crystal.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Trapping Centers in Bi12tio20< Single Crystals by Thermally Stimulated Current
    (Elsevier, 2021) Isik, M.; Delice, S.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.
    Sillenite group compounds have been widely utilized in photocatalytic applications. One of the member of this group, Bi12TiO20 single crystal, was grown by Czochralski method. The structural properties were investigated by x-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. XRD pattern presented well-defined intensive peaks associated with cubic crystalline structure. SEM images indicated the crystal surface as almost uniform and smooth. Thermally stimulated current (TSC) experiments were performed in the 10-280 K temperature range to reveal shallow trapping centers in the Bi12TiO20 single crystal. Two peaks around 112 and 179 K were observed in the TSC glow curve. The analyses of these curves considering the curve fitting and peak shape techniques resulted in presence of two hole centers at 0.09 and 0.14 eV. Heating rate dependencies of peak maximum temperature and current were also investigated throughout the paper.
  • Article
    Citation - WoS: 29
    Citation - Scopus: 29
    Temperature Dependence of Band Gap of Ceo2 Nanoparticle Photocatalysts
    (Elsevier, 2023) Isik, M.; Delice, S.; Gasanly, N. M.
    Cerium dioxide (CeO2) have been one of the attractive photocatalysts material in recent years. Band gap and its change with temperature takes remarkable attention in the photocatalytic applications. The present work re-ported structural and temperature-dependent band gap characteristics of the CeO2 nanoparticles on glass sub-strate. X-ray diffraction (XRD) pattern exhibited nine peaks related to face-centered cubic structure. Crystallite size and micro-strain of the nanoparticles were determined from the analyses of XRD peaks. Scanning electron microscope (SEM) image indicated that CeO2 is in the form of nanoparticle with almost cube shaped of diameters in between 20 and 30 nm. Transmission measurements were performed in the 350-700 nm range at various temperatures between 10 and 300 K. The analyses of the transmission spectra showed that direct band gap energy decreases from 3.35 to 3.29 eV when sample temperature was raised from 10 K to room temperature. The temperature dependence of band gap energy was analyzed by Varshni expression. The analysis presented ab-solute zero and rate of change of band gap with temperature as 3.35 eV and-4.7 x 10-4 eV/K, respectively.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 6
    Spectroscopic Ellipsometry Characterization of Pbwo4 Single Crystals
    (Elsevier, 2022) Delice, S.; Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.
    Optical characterization of PbWO4 single crystals grown by Czochralski method was achieved in virtue of spectroscopic ellipsometry experiments carried out in the energy region of 1.0-5.6 eV at room temperature. Tetragonal scheelite structure with lattice parameters of a = b = 5.4619 & Aring; and c = 12.0490 & Aring; was determined for the bulk crystal utilizing from XRD analysis. Analyses of the ellipsometry data presented the photon energy dependencies of complex dielectric function of the crystal. The real part of the dielectric function exhibited increasing behavior with energy in the below 4.1 eV and then decreased immediately. Zero frequency refractive index and dielectric constant were determined to be 2.02 and 4.08, respectively, using Wemple and DiDomenico oscillator model. High frequency dielectric constant was calculated as 4.30 by Spitzer-Fan model. Optical band gap of PbWO4 was found to be 3.24 eV from the dielectric relaxation time spectrum. Moreover, existence of two critical points with energies of 3.70 and 4.58 eV was revealed from the analyses of extinction coefficient and second derivative of the dielectric function. These levels were considered to be due to creation of cation exciton (Pb2+ 6s(2) - Pb2+ 6s6p) and transitions in the [WO4](2-) group.