Search Results

Now showing 1 - 10 of 10
  • Article
    Citation - WoS: 6
    Citation - Scopus: 11
    Influence of the Heat Treatment on the Microstructure, Mechanical and High-Temperature Oxidation Behavior of Hastelloy X Alloy Fabricated Via Laser Powder Bed Fusion
    (Elsevier Science Sa, 2025) Ozer, Seren; Yalcin, Mustafa Alp; Bilgin, Gueney Mert; Davut, Kemal; Esen, Ziya; Dericioglu, Arcan F.
    The effect of building direction and heat treatment on the microstructure, mechanical properties, and high- temperature oxidation behavior of Hastelloy X (HX) alloy fabricated by the laser powder bed fusion (L-PBF) method was studied. Electron backscatter diffraction analyses revealed that the development of textured columnar grains with varying average grain sizes, boundary fractions, and dislocation densities induced the mechanical anisotropy observed in both horizontally and vertically fabricated samples. The yield strength (YS) values of the horizontally and vertically as-fabricated samples were determined as 605.7 +/- 15.9 MPa and 552.3 +/- 8.5 MPa, respectively. The post-processing heat treatment increased the ductility remarkably and reduced YS value down to similar to 445 MPa for all samples by the elimination of microstructural anisotropy and increased grain size subsequent to recrystallization. Oxidation tests conducted at 900 degrees C up to 100 h on as- fabricated samples exhibited severe intergranular oxidation, which was accompanied by the formation of large voids and microcracks as well as spallation of the oxide layer. In contrast, the heat-treatment improved the oxidation resistance of the alloy possibly due to the formation of uniform and dense Cr2O3 layer on the substrate surface.
  • Article
    Citation - WoS: 45
    Citation - Scopus: 49
    Recrystallization and Grain Growth Kinetics of In718 Manufactured by Laser Powder Bed Fusion
    (Elsevier, 2022) Dogu, Merve Nur; Davut, Kemal; Obeidi, Muhannad Ahmed; Yalcin, Mustafa Alp; Gu, Hengfeng; Low, Thaddeus Song En; Brabazon, Dermot
    The recrystallization and grain growth behaviour of IN718 alloy additively manufactured by laser powder bed fusion (L-PBF) is presented herein. The effects of three different temperatures (1050, 1150 and 1250 degrees C) and holding times (15, 45 and 90 min) were investigated. The texture evolution of the samples was recorded via electron backscatter diffraction (EBSD). The as-built sample is composed of bowl-shaped melt pools, a chessboard-like grain pattern and has a cube texture {100}<001>. Recrystallized grains were observed in the samples treated at 1150 degrees C for 15 min, as well as the samples treated for longer periods and at higher temperatures. Recrystallization was observed to start from high dislocation density regions, including the overlapping melt pools and the borders of the chessboard-like pattern. The initial cube texture transforms into a first-generation cube-twin texture {122}<212> via a twinning-assisted recrystallization mechanism. Then, those recrystallization nuclei sweep through the high defect density matrix; during which almost no new twins are formed. The samples treated at 1250 degrees C are almost completely recrystallized, which forms a weaker cube texture and a stronger P-orientation {011}<112>. However, the growth of recrystallized grains is very limited due to the presence of non-coherent precipitates. (C) 2022 The Author(s). Published by Elsevier B.V.
  • Article
    Citation - WoS: 22
    Citation - Scopus: 25
    Effect of Solution Heat Treatment on the Microstructure and Crystallographic Texture of In939 Fabricated by Powder Bed Fusion-Laser Beam
    (Elsevier, 2023) Dogu, Merve Nur; Ozer, Seren; Yalcin, Mustafa Alp; Davut, Kemal; Bilgin, Guney Mert; Obeidi, Muhannad Ahmed; Brabazon, Dermot
    The effect of various solution heat treatment temperatures (i.e., 1120, 1160, 1200 and 1240 & DEG;C) on the microstructure, grain morphology and crystallographic texture of IN939 fabricated by powder bed fusion-laser beam (PBF-LB) was investigated. Microstructural analyses showed that the high-temperature gradient and rapid solidification of the PBF-LB processing caused different resulting microstructures compared to conventionally pro-duced counterparts. The melt pool morphologies and laser scanning paths were examined in the as-fabricated samples in the XZ-and XY-planes, respectively. After the application of solution heat treatment at 1120 & DEG;C, the as-fabricated PBF-LB initial microstructure was still apparent. For solution heat treatments of 1200 & DEG;C and above, the melt pool and scanning path morphologies disappeared and converted into a mixture of columnar grains in the XZ-plane and equiaxed grains in the XY-plane. On the other hand, large equiaxed grains were observed when the samples were solutionized at 1240 & DEG;C. Additionally, g' phase precipitated within the matrix after all solution heat treatment conditions, which led to increase in the microhardness values. According to electron backscatter diffraction (EBSD) analyses, both as-fabricated and solution heat-treated samples had intense texture with {001} plane normal parallel to the building direction. The first recrystallized grains began to appear when the samples were subjected to the solution heat treatment at 1160 & DEG;C and the fraction of the recrystallized grains increased with increasing temperature, as supported by kernel average misorientation (KAM) and grain spread orientation (GOS) analyses.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  • Article
    Citation - WoS: 13
    Citation - Scopus: 13
    Effect of Aging Treatment on the Microstructure, Cracking Type and Crystallographic Texture of In939 Fabricated by Powder Bed Fusion-Laser Beam
    (Elsevier, 2024) Ozer, Seren; Dogu, Merve Nur; Ozdemirel, Ceren; Bilgin, Guney Mert; Gunes, Mert; Davut, Kemal; Brabazon, Dermot
    This study aimed to provide a comprehensive understanding of how aging treatments (namely, HT1 and HT2) affect the microstructure, cracking behavior, and crystallographic texture of IN939 fabricated by powder bed fusion-laser beam (PBF-LB) method. Although both aged samples demonstrated similar grain structure and recrystallization behavior according to the electron backscatter diffraction (EBSD) analysis, as well as the precipitation of bimodal gamma ' phase and MC- and M23C6-type carbides, notable differences were observed in the size and morphology, particularly the gamma ' phase. The HT1 sample displayed coarsened primary gamma ' phase, with sizes reaching up to 2 mu m and exhibiting varied morphologies, including irregular and cuboidal shapes. Additionally, this treatment led to the formation of some gamma '-gamma eutectic regions and plate-like eta phase, along with the decomposition of MC-type carbides into M23C6-type carbides. In contrast, the HT2 sample displayed uniformly distributed spherical primary gamma ' phase with sizes ranging from 70 to 120 nm, accompanied by very fine secondary gamma ' phase. Furthermore, it was found that changes in both aged sample microstructures could result in the formation of strain-age cracks due to the gamma ' phase formation and liquation cracks due to the partial remelting of lower melting point phases. The findings also revealed that with the application of aging treatments, the hardness of the as-fabricated sample (339.8 +/- 3.4 HV) increased to 440.2 +/- 5.6 HV and 508.1 +/- 4.8 HV for the heat treatment of HT1 and HT2, respectively.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 12
    A Comprehensive Characterization of the Effect of Spatter Powder on In939 Parts Fabricated by Laser Powder Bed Fusion
    (Elsevier Sci Ltd, 2023) Dogu, Merve Nur; Mussatto, Andre; Yalcin, Mustafa Alp; Ozer, Seren; Davut, Kemal; Obeidi, Muhannad Ahmed; Brabazon, Dermot
    This study is focused on a comprehensive characterization of virgin and spatter IN939 powders and the effects of a certain amount of spatter powder on the part quality of IN939 fabricated by the L-PBF process. A brown tint coloration formed Al2O3 oxide, pores, a 124.4% increase in the average particle size, a 10.2% decrease in the powder circularity, and a 7.5% decrease in the powder aspect ratio were observed in the spatter powder. Additionally, higher average grain size and lower nanohardness were obtained for the spatter powder. In order to understand the effect of a certain amount of spatter powder on the part quality, 10 wt% spatter powder was mixed with the virgin powder. This addition was found to decrease the flowability of the powder. Moreover, this addition decreased relative density by around 0.3% and increased surface roughness by around 80.8% in the fabricated samples (termed as V and SV). On the other hand, there was no considerable microstructural, texture, microhardness, and nanohardness difference between V and SV samples, although the spatter powder addition caused a 30.2% increase in the average grain size of SV. The overall texture for both V and SV samples exhibit (00 1)//BD.
  • Article
    Citation - WoS: 24
    Citation - Scopus: 25
    Microstructural and Texture Evolution During Thermo-Hydrogen Processing of Ti6al4v Alloys Produced by Electron Beam Melting
    (Elsevier Science inc, 2020) Dogu, Merve Nur; Esen, Ziya; Davut, Kemal; Tan, Evren; Gumus, Berkay; Dericioglu, Arcan F.
    The present study was conducted to reveal the effects of building angles and post heat-treatments (2-step Thermo-Hydrogen Processing (THP) and conventional annealing treatment) on the density, microstructure and texture of Ti6Al4V alloy parts produced by Electron Beam Melting (EBM). The results showed that regardless of the building angle; the density, microstructure and crystallographic texture (defined with respect to building angle) of the as-produced samples were identical; having Widmanstatten a structure and columnar beta-grains which are parallel to building direction. The main texture component for the alpha phase was (10 (1) over bar0)//building direction, and for beta phase (001)//building or heat flow direction. The first step of THP, namely, the hydrogenation step, produced a needle-like microstructure and increased the local misorientations due to lattice distortion. On the other hand, after application of the second step of THP, dehydrogenation step, microstructure was refined, particularly alpha-grains that were larger than 10 mu m and located at grain boundaries. Moreover, THP randomized the crystallographic texture since it involves beta to alpha phase transformation, at which one beta-grain can produce 12 distinct alpha-variants. The grain boundary misorientation distributions also changed in accordance with the microstructural changes during the 2-step THP. On the other hand, annealing coarsened the grain boundary and Widmanstatten alpha phases; moreover, it changed the texture so that the basal planes (0001) rotated 30 degrees around the building direction.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 17
    Machinability Evaluations of Austempered Ductile Iron and Cast Steel With Similar Mechanical Properties Under Eco-Friendly Milling Conditions
    (Elsevier, 2021) Eraslan, Dogancan; Balci, Ahmet; Cetin, Baris; Ucak, Necati; Cicek, Adem; Yilmaz, Okan Deniz; Davut, Kemal
    In engineering applications, to increase productivity and to decrease production costs, the selection of the proper engineering material is essential. At that point, machining operations directly affect the production costs. Therefore, determination of the material with the desired mechanical properties and easy-to-cut characteristics has a critical importance. This situation is currently gaining more importance in especially defense industry applications in which high strength engineering materials are heavily employed. In addition, tool performance and final product quality are directly influenced by the cooling and/or lubrication conditions in particularly interrupted cutting operations. In this study, machinability characteristics of G18NiMoCr3-6+QT1 cast steel (CS) and 1050-6 austempered ductile iron (ADI) with similar mechanical properties during milling operations were investigated. The tests were performed using TiAlN coated cemented carbide (WC-Co) end mills under dry, conventional cutting fluid (CCF), and minimum quantity lubrication (MQL) conditions. Under each condition, the variations of cutting forces, tool wear, average surface roughness (Ra), and subsurface microstructure and microhardness were analyzed for both materials and then compared to one another. Test results showed that 1050-6 ADI led to further tool wear in comparison to G18NiMoCr3-6+QT1 CS. According to obtained results, dry condition is more favorable than CCF and MQL conditions in terms of cutting forces, surface roughness, and tool wear for both types of material. In addition, examinations on subsurface microstructures showed that MQL conditions provided an effective cutting environment to maintain microstructural stability of workpiece materials. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  • Article
    Investigations on the Effect of Secondary Treatments on Ti48Al2Cr2Nb Alloy Manufactured by Electron Beam Powder Bed Fusion Method
    (Elsevier Sci Ltd, 2025) Bilgin, Guney Mert; Ozer, Seren; Davut, Kemal; Esen, Ziya; Dericioglu, Arcan F.
    As-built Ti48Al2Cr2Nb alloy samples produced by electron beam powder bed fusion (PBF-EB) exhibited notable brittleness. The low ductility was attributed to coarse gamma bands aligned perpendicular to the building and tensile direction. Additionally, variations in aluminum content and hardness between the coarse colonies and fine gamma/alpha(2) lamellae contribute to this phenomenon. Electron backscattered diffraction (EBSD) studies revealed a higher amount of dislocation density and inherent strain after PBF-EB manufacturing. Hence, usage of Ti48Al2Cr2Nb alloy in the as-built condition in aviation applications with high loads and demanding environments is not found to be viable. To eliminate these negative aspects and make PBF-EB produced Ti48Al2Cr2Nb alloy available for demanding applications, two distinct post-processing heat treatments; namely, hot isostatic pressing (HIP) and annealing heat treatment (HT) were employed at 1200 degrees C. A comprehensive characterization covering microstructure analysis, EBSD, fracture surface examination, as well as room and high-temperature tensile tests allowed determination of the effect of post-processes. HIPing altered the banded structure observed in the as-built samples by increasing the amount of alpha(2) phase and grain size. On the other hand, HT made the banded structure more pronounced without significantly increasing the amount of alpha(2) phase. HT also strengthened the <001> texture, while HIPing introduced randomization of grains. On the other hand, complete recrystallization is achieved as a result of HT at 1200 degrees C for 2 h, whereas HIPing at the same temperature for 2 h induced only 80.5 % recrystallization. In both post-processes, dislocation density and inherent strain were reduced. Room temperature and high-temperature tensile tests demonstrated that both HIPing and HT eliminated the extreme brittleness of the as-built samples.
  • Article
    Citation - WoS: 39
    Citation - Scopus: 42
    Effect of Post Fabrication Aging Treatment on the Microstructure, Crystallographic Texture and Elevated Temperature Mechanical Properties of In718 Alloy Fabricated by Selective Laser Melting
    (Elsevier Science Sa, 2022) Ozer, Seren; Bilgin, Guney Mert; Davut, Kemal; Esen, Ziya; Dericioglu, Arcan F.
    The effect of building direction and post fabrication aging treatment on the microstructure, crystallographic texture and high temperature mechanical properties of Inconel 718 (IN718) alloy fabricated by selective laser melting (SLM) method was investigated. After aging, arc-shaped structures seen in as-fabricated samples dis-appeared and converted into a mixture of columnar and equiaxed grains. Nano-sized gamma '' and/or gamma' precipitates were formed upon aging; however, MC type carbides and Laves phase encountered in as-fabricated samples were not dissolved completely after aging. Moreover, aging did not alter the texture ((001)//building direction (BD)) of as-fabricated samples. Mechanical properties of the alloys under tension were influenced by the build direction, aging time and test temperature. As-fabricated samples produced in vertical direction exhibited higher room temperature strengths with lower ductility due to orientation of overlapped prior melt pools. Room temperature tensile test results revealed that peak aging caused a significant improvement in ultimate tensile strength (UTS), from 1066.5 MPa and 998.4 MPa to 1408.5 MPa and 1330.4 MPa whereas elongation values decreased from 27.5% and 32.2% to 19.6% and 23.7% in vertically and horizontally built samples, respectively. Peak-aged samples (aged at 700 degrees C for 8 h) tested at 600 degrees C displayed serrated regions in their stress-strain curves due to dynamic strain aging (DSA). Although strength values of the samples displayed an expected decrease by temperature, ductility of the samples reduced to minimum at temperatures around 700-800 degrees C, which was attributed to intermediate temperature embrittlement.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 9
    A Comprehensive Study of the Effect of Scanning Strategy on In939 Fabricated by Powder Bed Fusion-Laser Beam
    (Elsevier, 2024) Dogu, Merve Nur; Ozer, Seren; Yalcin, Mustafa Alp; Davut, Kemal; Obeidi, Muhannad Ahmed; Simsir, Caner; Brabazon, Dermot
    This study provides a comprehensive investigation into the effects of different scanning strategies on the material properties of IN939 fabricated using the PBF-LB process. The scanning strategies examined included alternating bi-directional scanning with rotation angles of 0 degrees, 45 degrees, 67 degrees, and 90 degrees between adjacent layers (named as shown), as well as alternating chessboard scanning with rotation angles of 67 degrees and 90 degrees (named as Q67 degrees and Q90 degrees). The results revealed that the 45 degrees and 67 degrees samples had the highest relative density, while the 0 degrees and Q67 degrees samples showed the highest average porosity. Moreover, various types of cracks, including solidification, solid-state, and oxide-induced cracks, were observed. Among the bi-directional scan samples, the 0 degrees sample displayed the most extensive cracking and the highest sigma max residual stress values in both XZ and XY planes. Conversely, the 45 degrees and 67 degrees samples exhibited fewer cracks. Notably, the lowest sigma max residual stress in the XZ planes among the bidirectional scan samples was observed in the 67 degrees sample. Additionally, microstructural analyses indicated differences in grain size and morphology, among the samples. Texture analysis indicated that the 0 degrees and 90 degrees samples exhibited strong cube textures, whereas the texture intensity weakened for the 45 degrees and 67 degrees samples. Moreover, the alternating chessboard scanning strategy led to rougher surfaces (higher Sa and Sz values) compared to the alternating bi-directional scanning strategy, regardless of the rotation angles. Furthermore, the microhardness values among the samples showed minimal variance, ranging between 321 + 14 HV and 356+ 7 HV.