Investigations on the Effect of Secondary Treatments on Ti48Al2Cr2Nb Alloy Manufactured by Electron Beam Powder Bed Fusion Method

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.
Organizational Unit
Department of Metallurgical and Materials Engineering
Metalurji ve Malzeme Mühendisliğinin alanı çok geniştir ve temel olarak metaller, seramikler, polimerler ve bu üç malzemenin birlikte oluşturdukları kompozit malzemelerin üretimlerini, şekillendirilmelerini, işlemlerini, karakterizasyonlarını ve kullanımlarındaki davranışlarını kapsar. Yüksek Lisans programımızda amacımız, öğrencilerimizin bu konulardan bir veya birkaçında kapsamlı ve derin bir kuramsal ve uygulamalı bilgi birikimine sahip olmaları ve bilgiye ulaşma, ulaşılan bilgileri değerlendirme, deney tasarlama, deney sonuçlarını analiz etme ve raporlama yeteneklerini kazanmalarıdır. Web sayfamızda yer alan bilgilerden de görülebileceği gibi modern cihaz ve ekipmanla donatılmış güçlü laboratuvar altyapımız çok farklı konularda araştırma yapılmasını olanaklı kılmaktadır. Yüksek Lisans müfredatımızda Malzemelerin İleri Termodinamiği, Malzeme Mühendisliğinde Matematiksel Yöntemler ve Malzeme-Süreç Seçimi ve Tasarım Problemleri isimli üç zorunlu ders yer almaktadır. Tezli Yüksek Lisans programımız bu zorunlu derslerin yanında zorunlu olan Seminer, Yüksek Lisans Tezi ve dört teknik seçmeli dersten, Tezsiz Yüksek Lisans programımız ise zorunlu olan Bitirme Projesi ve 7 teknik seçmeli dersten oluşmaktadır. Teknik seçmeli dersler tez danışmanının onayı dâhilinde çok sayıdaki teknik seçmeli ders arasından seçilmektedir. Programımıza Metalurji ve Malzeme Mühendisliği mezunlarının yanısıra diğer Mühendislik Bölümleri ile Fizik, Kimya vb. bölümlerin mezunları da kabul edilebilmektedir. Bu bölümlerden mezun olan adayların, her birinin akademik ve profesyonel birikimlerine göre belirlenecek bir bilimsel hazırlık programını tamamlamaları gerekmektedir.

Journal Issue

Abstract

As-built Ti48Al2Cr2Nb alloy samples produced by electron beam powder bed fusion (PBF-EB) exhibited notable brittleness. The low ductility was attributed to coarse gamma bands aligned perpendicular to the building and tensile direction. Additionally, variations in aluminum content and hardness between the coarse colonies and fine gamma/alpha(2) lamellae contribute to this phenomenon. Electron backscattered diffraction (EBSD) studies revealed a higher amount of dislocation density and inherent strain after PBF-EB manufacturing. Hence, usage of Ti48Al2Cr2Nb alloy in the as-built condition in aviation applications with high loads and demanding environments is not found to be viable. To eliminate these negative aspects and make PBF-EB produced Ti48Al2Cr2Nb alloy available for demanding applications, two distinct post-processing heat treatments; namely, hot isostatic pressing (HIP) and annealing heat treatment (HT) were employed at 1200 degrees C. A comprehensive characterization covering microstructure analysis, EBSD, fracture surface examination, as well as room and high-temperature tensile tests allowed determination of the effect of post-processes. HIPing altered the banded structure observed in the as-built samples by increasing the amount of alpha(2) phase and grain size. On the other hand, HT made the banded structure more pronounced without significantly increasing the amount of alpha(2) phase. HT also strengthened the <001> texture, while HIPing introduced randomization of grains. On the other hand, complete recrystallization is achieved as a result of HT at 1200 degrees C for 2 h, whereas HIPing at the same temperature for 2 h induced only 80.5 % recrystallization. In both post-processes, dislocation density and inherent strain were reduced. Room temperature and high-temperature tensile tests demonstrated that both HIPing and HT eliminated the extreme brittleness of the as-built samples.

Description

Keywords

A. Intermetallics (Aluminides), B. Mechanical Properties, C. Heat Treatment, C. Hot Isostatic Pressing, C. Near-Net-Shape Manufacturing, G. Aero-Engine Components, A. Intermetallics (Aluminides), B. Mechanical Properties, C. Heat Treatment, C. Hot Isostatic Pressing, C. Near-Net-Shape Manufacturing, G. Aero-Engine Components

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1

Source

Intermetallics

Volume

187

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.