Search Results

Now showing 1 - 3 of 3
  • Article
    ISAR Imaging of Drone Swarms at 77 GHz
    (Tubitak Scientific & Technological Research Council Turkey, 2025) Coruk, Remziye Busra; Kara, Ali; Aydin, Elif
    The proliferation of easily available, internet-purchased drones, coupled with the emergence of coordinated drone swarms, poses a significant security threat for airspace. Detecting these swarms is crucial to prevent potential accidents, criminal misuse, and airspace disruptions. This paper proposes a novel inverse synthetic aperture radar (ISAR) imaging technique for high-resolution reconstruction of drone swarms at 77 GHz millimeter wave (mmWave) frequency, offering a valuable tool for military and defense antidrone systems. The key parameters affecting down-range and cross-range resolution (0.05 m), ultimately enabling the generation of detailed ISAR images are discussed. Here, we create diverse scenarios encompassing various swarm formations, sizes, and payload configurations by employing ANSYS simulations. To enhance image quality, different window functions are evaluated, and the Hamming window is selected due to its highest peak signal-to-noise ratio (PSNR) (16.3645) and structural similarity (SSIM) (0.9067) values, ensuring superior noise reduction and structural preservation. The results demonstrate that the effectiveness of high-resolution ISAR imaging in accurately detecting and characterizing drone swarms pave the way for enhanced airspace security measures.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 6
    On the Classification of Modulation Schemes Using Higher Order Statistics and Support Vector Machines
    (Springer, 2022) Coruk, Remziye Busra; Gokdogan, Bengisu Yalcinkaya; Benzaghta, Mohamed; Kara, Ali
    The recognition of modulation schemes in military and civilian applications is a major task for intelligent receiving systems. Various Automatic Modulation Classification (AMC) algorithms have been developed for this purpose in the literature. However, classification with low computational complexity as well as reasonable processing time is still a challenge. In this paper, a feature-based approach along with various classifiers is employed based on statistical features as well as higher-order moments and cumulants. An over-the-air (OTA) recorded dataset consisting of four analog and ten digital modulation schemes are used for testing the proposed method at 0-20 dB SNR. The overall accuracy for quadratic Support Vector Machine (SVM) is found to be as high as 98% at 10 dB. The comparison of the results with other AMC papers published in the literature indicates that the proposed method present higher accuracy, especially for realistic channel induced OTA dataset.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Hierarchical Classification of Analog and Digital Modulation Schemes Using Higher-Order Statistics and Support Vector Machines
    (Springer, 2024) Yalcinkaya, Bengisu; Coruk, Remziye Busra; Kara, Ali; Tora, Hakan
    Automatic modulation classification (AMC) algorithms are crucial for various military and commercial applications. There have been numerous AMC algorithms reported in the literature, most of which focus on synthetic signals with a limited number of modulation types having distinctive constellations. The efficient classification of high-order modulation schemes under real propagation effects using models with low complexity still remains difficult. In this paper, employing quadratic SVM, a feature-based hierarchical classification method is proposed to accurately classify especially higher-order modulation schemes and its performance is investigated using over the air (OTA) collected data. Statistical features, higher-order moments, and higher-order cumulants are utilized as features. Then, the performances of some well-known classifiers are evaluated, and the classifier presenting the best performance is employed in the proposed hierarchical classification model. An OTA dataset containing 17 analog and digital modulation schemes is used to assess the performance of the proposed classification model. With the proposed hierarchical classification algorithm, a significant improvement has been achieved, especially in higher-order modulation schemes. The overall accuracy with the proposed hierarchical structure is 96% after 5 dB signal-to-noise ratio value, approximately a 10% increase is achieved compared to the traditional classification algorithm.