ISAR Imaging of Drone Swarms at 77 GHz

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Tubitak Scientific & Technological Research Council Turkey

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The proliferation of easily available, internet-purchased drones, coupled with the emergence of coordinated drone swarms, poses a significant security threat for airspace. Detecting these swarms is crucial to prevent potential accidents, criminal misuse, and airspace disruptions. This paper proposes a novel inverse synthetic aperture radar (ISAR) imaging technique for high-resolution reconstruction of drone swarms at 77 GHz millimeter wave (mmWave) frequency, offering a valuable tool for military and defense antidrone systems. The key parameters affecting down-range and cross-range resolution (0.05 m), ultimately enabling the generation of detailed ISAR images are discussed. Here, we create diverse scenarios encompassing various swarm formations, sizes, and payload configurations by employing ANSYS simulations. To enhance image quality, different window functions are evaluated, and the Hamming window is selected due to its highest peak signal-to-noise ratio (PSNR) (16.3645) and structural similarity (SSIM) (0.9067) values, ensuring superior noise reduction and structural preservation. The results demonstrate that the effectiveness of high-resolution ISAR imaging in accurately detecting and characterizing drone swarms pave the way for enhanced airspace security measures.

Description

Keywords

Radar Imaging, Drone Swarm, Inverse Synthetic Aperture Radar, Detection, Millimeter Wave

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Q3

Source

Turkish Journal of Electrical Engineering and Computer Sciences

Volume

33

Issue

4

Start Page

429

End Page

442
Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo