4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 2Citation - Scopus: 2Performance Assessment of Anion Exchange Electrolyzer With PBI-BASED Membrane Through 0-D Modeling(Elsevier Ltd, 2025) Celebi, Ceren; Colpan, C. Ozgur; Devrim, YilserAnion exchange membrane (AEM) water electrolysis is emerging as a promising method for the sustainable production of hydrogen. A key advantage lies in the potential for cost-effective hydrogen production by substituting expensive noble metal electrocatalysts with affordable transition metals. This work presents a 0-D mathematical model for evaluating the performance of AEMWEs, with a particular focus on polybenzimidazole (PBI)-based membranes, which are renowned for their high thermal stability, chemical resistance and excellent conductivity in alkaline media. The objective of the model is to predict the behavior of membranes in AEMWE systems, and it has been employed to evaluate the performance of a range of PBI membranes. To ensure precision, the values were meticulously selected from the literature, in accordance with the experimental conditions. Furthermore, IR-corrected validation was incorporated to isolate the impact of membrane conductivity on performance, thereby facilitating a dependable assessment of PBI membranes under diverse conditions. The model considers the effects of electrolyte resistance and bubble formation on cell voltage behavior. The efficiency was evaluated on the basis of the higher heating value (HHV). The findings demonstrate that one membrane exhibits consistent efficiency across a broad temperature range (40-90 degrees C), whereas the other displays notable variability under diverse conditions. In particular, the efficiency of the electrolyzer is significantly enhanced by the use of thinner membranes and higher temperatures. The highest efficiencies obtained were 83.9% and 79.8% for 25 mu m and 50 mu m PBI/Polystyrene membrane under the operating conditions of 1 M KOH solution at 80 degrees C and current density of 2 A/cm2. This study aims to provide valuable information on the performance of PBI membranes through a zero-dimensional model validated by experimental data.Article Citation - WoS: 3Citation - Scopus: 3A Review on Membranes for Anion Exchange Membrane Water Electrolyzers(Pergamon-Elsevier Science Ltd, 2026) Altinisik, Hasan; Celebi, Ceren; Ozden, Adnan; Devrim, Yilser; Colpan, C. OzgurAnion exchange membrane water electrolyzers (AEMWEs) - using water and renewable electricity as the input - provide a sustainable pathway to hydrogen production. AEMWEs perform the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) with modest overpotentials at practical current densities (>1 A cm(-2)). The recent catalysis, component, and system-level breakthroughs have enabled significant improvements in current densities and energetic efficiencies. The challenge, however, is to maintain these impressive activities and efficiencies through long-term operation at scale. High-performance, efficient, stable, and economically viable AEMWEs require high-performance, low-cost, and scalable anion exchange membranes (AEMs). This Review provides an overview of physical, chemical, and transport properties of commercial and non-commercial AEMs. The article discusses the operating principles, structures, characteristics, strengths, and weaknesses of conventional and emerging AEMs, along with their performance and stability implications in AEMWEs. The article highlights the characteristics that have intricate implications on performance, stability, and cost. It discusses recent advances and best practices to combine high-performance, efficiency, stability, and low-cost in a single AEM structure. The Review highlights the trade-offs between AEM characteristics, with an overview of emerging approaches that would overcome performance, stability, and cost challenges. The Review concludes by highlighting the research gaps and providing research directions with the potential to take the technology a step closer to wide-scale deployment.Article Citation - WoS: 2Citation - Scopus: 2Thermoeconomic Analysis of an Integrated Membrane Reactor and Carbon Dioxide Capture System Producing Decarbonized Hydrogen(Pergamon-elsevier Science Ltd, 2025) Atak, Yagmur Nalbant; Ince, Alper Can; Colpan, C. Ozgur; Iulianelli, Adolfo; Serincan, Mustafa Fazil; Pasaogullari, UgurIn this study, a novel thermo-economic analysis on a membrane reactor adopted to generate hydrogen, coupled to a carbon-dioxide capture system, is proposed. Exergy destruction, fuel, and environmental as well as purchased equipment costs have been accounted to estimate the cost of hydrogen production in the aforementioned integrated plant. It has been found that the integration of the CO2 capture system with the membrane reactor is responsible for the reduction of the hydrogen production cost by 12 % due to the decrease in environmental penalty cost. In addition, the effects of operating parameters (steam-to-carbo ratio and biogas temperature) on the hydrogen production cost are investigated. Hence, this work demonstrates that the latter can be decreased by approximately 2 $/kgH2 when steam to carbon ratio increases from 1.5 to 4. The analyses reveal that steam-tocarbo ratio increases exergy destruction cost, affecting consequently also the hydrogen production cost. However, from a thermodynamic point of view, it enhances the hydrogen production in the membrane reactor, mutually lowering the hydrogen production cost. It has been also estimated that a decrease in the biogas inlet temperature from 450 to 400 degrees C can reduce the hydrogen production cost by 7 %. This study demonstrates that the fuel cost is a major economic parameter affecting commercialization of hydrogen production, while exergy destruction and environmental costs are also significant factors in determining the hydrogen production cost.Article Citation - WoS: 8Citation - Scopus: 8Experimental and Modeling Studies of a High-Temperature Electrochemical Hydrogen Compressor(Pergamon-elsevier Science Ltd, 2024) Durmus, Gizem Nur Bulanik; Kuzu, Cemil; Devrim, Yilser; Colpan, C. OzgurSome non-technical factors such as economics and logistics prevent hydrogen (H2) tech-nologies from becoming more widespread in daily life. Today, the prevalence of H2 tech-nologies requires new technological developments. Electrochemical hydrogen compressors (ECHC) are of great interest due to their ability to pressurize and purify in one step. In this study, the electrochemical H2 compression performance of high phosphoric acid (PA) doped poly 2,2-m-phenylene-5,5-benzimidazole (PBI) membrane-based HT-ECHC under high temperature and non-humid conditions was investigated through both an experimental and a numerical approach. The H2 compression capacity of HT-ECHC at different operating voltages was examined by performance tests at 160 degrees C, and it was determined that the electrochemical compression performance increased with increasing operating voltage. It was observed that the current density values also increased with increasing voltage, and it was determined that a current density of 61.2 A was obtained at 1 V. As a result of the tests, H2 was successfully compressed from atmospheric pressure to 60 bar by HT-ECHC without any gas leakage. The results of the developed model were compared with the experimental performance test data, and the variation of molar flow, cell voltage, and cell efficiency over time was examined. It has been determined that the back diffusion from the cathode to the anode in the cell increases with the increasing operating voltage of HT-ECHC and therefore the cell efficiency decreases. It has been evaluated that the developed model and experimental results are in good agreement. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
