A Review on Membranes for Anion Exchange Membrane Water Electrolyzers

No Thumbnail Available

Date

2026

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-Elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Department
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

Anion exchange membrane water electrolyzers (AEMWEs) - using water and renewable electricity as the input - provide a sustainable pathway to hydrogen production. AEMWEs perform the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) with modest overpotentials at practical current densities (>1 A cm(-2)). The recent catalysis, component, and system-level breakthroughs have enabled significant improvements in current densities and energetic efficiencies. The challenge, however, is to maintain these impressive activities and efficiencies through long-term operation at scale. High-performance, efficient, stable, and economically viable AEMWEs require high-performance, low-cost, and scalable anion exchange membranes (AEMs). This Review provides an overview of physical, chemical, and transport properties of commercial and non-commercial AEMs. The article discusses the operating principles, structures, characteristics, strengths, and weaknesses of conventional and emerging AEMs, along with their performance and stability implications in AEMWEs. The article highlights the characteristics that have intricate implications on performance, stability, and cost. It discusses recent advances and best practices to combine high-performance, efficiency, stability, and low-cost in a single AEM structure. The Review highlights the trade-offs between AEM characteristics, with an overview of emerging approaches that would overcome performance, stability, and cost challenges. The Review concludes by highlighting the research gaps and providing research directions with the potential to take the technology a step closer to wide-scale deployment.

Description

Keywords

Water Electrolyzers, Anion Exchange Membranes, Commercial Anion Exchange Membranes, Non-Commercial Anion Exchange Membranes, Characteristics of Anion Exchange Membranes, Performance of Anion Exchange Membranes

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Renewable & Sustainable Energy Reviews

Volume

226

Issue

Start Page

End Page

Collections

PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 16

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.