Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 123
    Citation - Scopus: 156
    Test Case Prioritization: a Systematic Mapping Study
    (Springer, 2013) Catal, Cagatay; Mishra, Deepti
    Test case prioritization techniques, which are used to improve the cost-effectiveness of regression testing, order test cases in such a way that those cases that are expected to outperform others in detecting software faults are run earlier in the testing phase. The objective of this study is to examine what kind of techniques have been widely used in papers on this subject, determine which aspects of test case prioritization have been studied, provide a basis for the improvement of test case prioritization research, and evaluate the current trends of this research area. We searched for papers in the following five electronic databases: IEEE Explorer, ACM Digital Library, Science Direct, Springer, and Wiley. Initially, the search string retrieved 202 studies, but upon further examination of titles and abstracts, 120 papers were identified as related to test case prioritization. There exists a large variety of prioritization techniques in the literature, with coverage-based prioritization techniques (i.e., prioritization in terms of the number of statements, basic blocks, or methods test cases cover) dominating the field. The proportion of papers on model-based techniques is on the rise, yet the growth rate is still slow. The proportion of papers that use datasets from industrial projects is found to be 64 %, while those that utilize public datasets for validation are only 38 %. On the basis of this study, the following recommendations are provided for researchers: (1) Give preference to public datasets rather than proprietary datasets; (2) develop more model-based prioritization methods; (3) conduct more studies on the comparison of prioritization methods; (4) always evaluate the effectiveness of the proposed technique with well-known evaluation metrics and compare the performance with the existing methods; (5) publish surveys and systematic review papers on test case prioritization; and (6) use datasets from industrial projects that represent real industrial problems.
  • Article
    Citation - WoS: 12
    Citation - Scopus: 13
    Techniques for Calculating Software Product Metrics Threshold Values: a Systematic Mapping Study
    (Mdpi, 2021) Mishra, Alok; Shatnawi, Raed; Catal, Cagatay; Akbulut, Akhan
    Several aspects of software product quality can be assessed and measured using product metrics. Without software metric threshold values, it is difficult to evaluate different aspects of quality. To this end, the interest in research studies that focus on identifying and deriving threshold values is growing, given the advantage of applying software metric threshold values to evaluate various software projects during their software development life cycle phases. The aim of this paper is to systematically investigate research on software metric threshold calculation techniques. In this study, electronic databases were systematically searched for relevant papers; 45 publications were selected based on inclusion/exclusion criteria, and research questions were answered. The results demonstrate the following important characteristics of studies: (a) both empirical and theoretical studies were conducted, a majority of which depends on empirical analysis; (b) the majority of papers apply statistical techniques to derive object-oriented metrics threshold values; (c) Chidamber and Kemerer (CK) metrics were studied in most of the papers, and are widely used to assess the quality of software systems; and (d) there is a considerable number of studies that have not validated metric threshold values in terms of quality attributes. From both the academic and practitioner points of view, the results of this review present a catalog and body of knowledge on metric threshold calculation techniques. The results set new research directions, such as conducting mixed studies on statistical and quality-related studies, studying an extensive number of metrics and studying interactions among metrics, studying more quality attributes, and considering multivariate threshold derivation.