Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 150
    Citation - Scopus: 152
    Pd-mnox< Nanoparticles Dispersed on Amine-Grafted Silica: Highly Efficient Nanocatalyst for Hydrogen Production From Additive-Free Dehydrogenation of Formic Acid Under Mild Conditions
    (Elsevier Science Bv, 2015) Bulut, Ahmet; Yurderi, Mehmet; Karatas, Yasar; Zahmakiran, Mehmet; Kivrak, Hilal; Gulcan, Mehmet; Kaya, Murat
    Herein we report the development of a new highly active, selective and reusable nanocatalyst for additive-free dehydrogenation of formic acid (HCOOH), which has great potential as a safe and convenient hydrogen carrier for fuel cells, under mild conditions. The new catalyst system consisting of bimetallic Pd-MnOx nanoparticles supported on aminopropyl functionalized silica (Pd-MnOx/SiO2-NH2) was simply and reproducibly prepared by deposition-reduction technique in water at room temperature. The characterization of Pd-mnO(x)/SiO2-NH2 catalyst was done by the combination of multipronged techniques, which reveals that the existence of highly crystalline individually nucleated Pd(0) and MnOx nanoparticles (d(mean) = 4.6 +/- 1.2 nm) on the surface of aminopropyl functionalized silica. These supported Pd-MnOx nanoparticles can catalyze the additive-free dehydrogenation of formic acid with record activity (TOF = 1300 h(-1)) at high selectivity (>99%) and conversion (>99%) under mild conditions (at 50 degrees C and under air). Moreover, easy recovery plus high durability of these supported Pd-MnOx nanoparticles make them a reusable heterogeneous catalyst in the additive-free dehydrogenation of formic acid. (C) 2014 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 141
    Citation - Scopus: 147
    Carbon Dispersed Copper-Cobalt Alloy Nanoparticles: a Cost-Effective Heterogeneous Catalyst With Exceptional Performance in the Hydrolytic Dehydrogenation of Ammonia-Borane
    (Elsevier, 2016) Bulut, Ahmet; Yurderi, Mehmet; Ertas, Ilknur Efecan; Celebi, Metin; Kaya, Murat; Zahmakiran, Mehmet
    Herein, we report the development of a new and cost-effective nanocatalyst for the hydrolytic dehydrogenation of ammonia-borane (NH3BH3), which is considered to be one of the most promising solid hydrogen carriers due to its high gravimetric hydrogen storage capacity (19.6 wt%) and low molecular weight. The new catalyst system consisting of bimetallic copper-cobalt alloy nanoparticles supported on activated carbon was simply and reproducibly prepared by surfactant-free deposition-reduction technique at room temperature. The characterization of this new catalytic material was done by the combination of multi-pronged techniques including ICP-MS, XRD, XPS, BFTEM, HR-TEM, STEM and HAADF-STEM-line analysis. The sum of their results revealed that the formation of copper-cobalt alloy nanoparticles (d(mean) =1.8 nm) on the surface of activated carbon (CuCo/C). These new carbon supported copper-cobalt alloy nanoparticles act as highly active catalyst in the hydrolytic dehydrogenation of ammonia-borane, providing an initial turnover frequency of TOF = 2700 h(-1) at 298 K, which is not only higher than all the non-noble metal catalysts but also higher than the majority of the noble metal based homogeneous and heterogeneous catalysts employed in the same reaction. More importantly, easy recovery and high durability of these supported CuCo nanoparticles make CuCo/C recyclable heterogeneous catalyst for the hydrolytic dehydrogenation of ammonia-borane. They retain almost their inherent activity even at 10th catalytic reuse in the hydrolytic dehydrogenation of ammonia-borane at 298K. (C) 2015 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 148
    Citation - Scopus: 152
    Carbon Supported Trimetallic Pdniag Nanoparticles as Highly Active, Selective and Reusable Catalyst in the Formic Acid Decomposition
    (Elsevier Science Bv, 2014) Yurderi, Mehmet; Bulut, Ahmet; Zahmakiran, Mehmet; Kaya, Murat
    Trimetallic PdNiAg nanoparticles supported on activated carbon were simply and reproducibly prepared by wet-impregnation followed by simultaneous reduction method without using any stabilizer at room temperature. The characterization of the resulting material was done by the combination of complimentary techniques and the sum of their results shows that the formation of well-dispersed 5.6 +/- 2.2 nm PdNiAg nanoparticles in alloy form on the surface of activated carbon. These carbon supported PdNiAg nanoparticles were employed as heterogeneous catalyst in the catalytic decomposition of formic acid, which has great potential as a safe and convenient hydrogen carrier for fuel cells, under mild conditions. It was found that PdNiAg/C can catalyze the dehydrogenation of formic acid with high selectivity (similar to 100%) and activity (TOF = 85 h(-1)) at 50 degrees C. More importantly, the exceptional stability of PdNiAg nanoparticles against to agglomeration, leaching and CO poisoning make PdNiAg/C reusable catalyst in the formic acid dehydrogenation. PdNiAg/C catalyst retains almost its inherent activity (>94%) even at 5th reuse in the dehydrogenation of formic acid with high selectivity (similar to 100%) at complete conversion. The work reported here also includes the compilation of kinetic data for PdNiAg/C catalyzed dehydrogenation of formic acid depending on catalyst [PdNiAg], substrate [HCOOH], promoter [HCOONa] concentrations and temperature to determine the rate expression and the activation parameters (Ea, Delta H-#, and Delta S-#) of the catalytic reaction. (C) 2014 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 20
    Cobalt nanoparticles supported on alumina nanofibers (Co/Al2O3): Cost effective catalytic system for the hydrolysis of methylamine borane
    (Pergamon-elsevier Science Ltd, 2019) Baguc, Ismail Burak; Yurderi, Mehmet; Bulut, Ahmet; Celebi, Metin; Kanberoglu, Gulsah Saydan; Zahmakiran, Mehmet; Baysal, Akin
    Amongst different amine-borane derivatives, methylamine-borane (CH3NH2BH3) seems to be one of the capable aspirants in the storing of hydrogen attributable to its high hydrogen capacity, stability and aptitude to generate hydrogen through its catalytic hydrolysis reaction under ambient conditions. In this research paper, we report that cobalt nano-particles supported on alumina nanofibers (Co/Al2O3) are acting as active nanocatalyst for catalytic hydrolysis of methylamine-borane. Co/Al2O3 nanocatalyst was fabricated by double-solvent method followed with wet-chemical reduction, and was characterized by utilizing various spectroscopic methods and imaging techniques. The results gathered from these analyses showed that the formation Al2O3 nanofibers supported cobalt(0) nanoparticles with a mean diameter of 3.9 +/- 1.2 nm. The catalytic feat of these cobalt nanoparticles was scrutinized in the catalytic hydrolysis of methylamine-borane by considering their activity and durability performances. They achieve releasing of 3.0 equivalent of H-2 via methylamine-borane hydrolysis at room temperature (initial TOF = 297 mol H-2/mol metal x h). Along with activity the catalytic durability of Co/Al2O3 was also studied by carrying out recyclability tests and it was found that these supported cobalt nanoparticles have good durability during the course of the catalytic recycles so that Co/Al2O3 preserves almost its innate activity at 5th catalytic recycle. The studies presented here also contains kinetic investigation of Co/Al2O3 catalyzed methylamine borane hydrolysis depending on the temperature, cobalt and methylamine borane concentrations, which were used to define rate expression and the activation energy of the catalytic reaction. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.