Pd-mno<i><sub>x</Sub>< Nanoparticles Dispersed on Amine-Grafted Silica: Highly Efficient Nanocatalyst for Hydrogen Production From Additive-Free Dehydrogenation of Formic Acid Under Mild Conditions
No Thumbnail Available
Date
2015
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science Bv
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Herein we report the development of a new highly active, selective and reusable nanocatalyst for additive-free dehydrogenation of formic acid (HCOOH), which has great potential as a safe and convenient hydrogen carrier for fuel cells, under mild conditions. The new catalyst system consisting of bimetallic Pd-MnOx nanoparticles supported on aminopropyl functionalized silica (Pd-MnOx/SiO2-NH2) was simply and reproducibly prepared by deposition-reduction technique in water at room temperature. The characterization of Pd-mnO(x)/SiO2-NH2 catalyst was done by the combination of multipronged techniques, which reveals that the existence of highly crystalline individually nucleated Pd(0) and MnOx nanoparticles (d(mean) = 4.6 +/- 1.2 nm) on the surface of aminopropyl functionalized silica. These supported Pd-MnOx nanoparticles can catalyze the additive-free dehydrogenation of formic acid with record activity (TOF = 1300 h(-1)) at high selectivity (>99%) and conversion (>99%) under mild conditions (at 50 degrees C and under air). Moreover, easy recovery plus high durability of these supported Pd-MnOx nanoparticles make them a reusable heterogeneous catalyst in the additive-free dehydrogenation of formic acid. (C) 2014 Elsevier B.V. All rights reserved.
Description
Bulut, ahmet/0000-0002-1697-8623; Demir KIVRAK, Hilal/0000-0001-8001-7854; Yurderi, Mehmet/0000-0002-0233-8940; Karatas, Yasar/0000-0002-9171-7781; Kivrak, Hilal/0000-0001-8001-7854; Kaya, Murat/0000-0002-2458-8924; Yurderi, Mehmet/0000-0002-6761-3763; Gulcan, Mehmet/0000-0002-3921-8811
Keywords
Formic acid, Dehydrogenation, Nanoparticles, Palladium, Manganese oxide
Turkish CoHE Thesis Center URL
Fields of Science
01 natural sciences, 0104 chemical sciences
Citation
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
147
Source
Applied Catalysis B: Environmental
Volume
164
Issue
Start Page
324
End Page
333
PlumX Metrics
Citations
CrossRef : 156
Scopus : 152
Captures
Mendeley Readers : 75
SCOPUS™ Citations
152
checked on Jan 26, 2026
Web of Science™ Citations
150
checked on Jan 26, 2026
Page Views
1
checked on Jan 26, 2026
Google Scholar™

OpenAlex FWCI
5.68034749
Sustainable Development Goals
1
NO POVERTY

7
AFFORDABLE AND CLEAN ENERGY

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

17
PARTNERSHIPS FOR THE GOALS


