3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 6Citation - Scopus: 5Growth and Characterization of Pbmo0.75w0.25o4 Single Crystal: a Promising Material for Optical Applications(Elsevier Science Sa, 2023) Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.The present paper reports the structural and optical properties of PbMo0.75W0.25O4 single crystals grown by Czochralski method. XRD pattern of the crystal indicated well-defined two diffraction peaks associated with tetragonal crystalline structure. Raman and infrared spectra of the grown single crystals were presented to get information about the vibrational characteristics. Observed Raman modes were associated with modes of PbMoO4 and PbWO4. Eight bands were revealed in the infrared spectrum. The bands observed in the spectrum were attributed to multiphonon absorption processes. Transmission spectrum was measured in the 375-700 nm spectral region. The analyses of the spectrum resulted in direct band gap energy of 3.12 +/- 0.03 eV. The compositional dependent band gap energy plot was drawn considering the reported band gap energies of PbMoO4, PbWO4 and revealed band gap of PbMo0.75W0.25O4 single crystal. An almost linear behavior of composition-band gap energy was seen for PbMo1-xWxO4 compounds. Urbach energy was also found from the absorption coefficient analysis as 0.082 +/- 0.002 eV.Article Citation - WoS: 7Citation - Scopus: 6Spectroscopic Ellipsometry Characterization of Pbwo4 Single Crystals(Elsevier, 2022) Delice, S.; Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.Optical characterization of PbWO4 single crystals grown by Czochralski method was achieved in virtue of spectroscopic ellipsometry experiments carried out in the energy region of 1.0-5.6 eV at room temperature. Tetragonal scheelite structure with lattice parameters of a = b = 5.4619 & Aring; and c = 12.0490 & Aring; was determined for the bulk crystal utilizing from XRD analysis. Analyses of the ellipsometry data presented the photon energy dependencies of complex dielectric function of the crystal. The real part of the dielectric function exhibited increasing behavior with energy in the below 4.1 eV and then decreased immediately. Zero frequency refractive index and dielectric constant were determined to be 2.02 and 4.08, respectively, using Wemple and DiDomenico oscillator model. High frequency dielectric constant was calculated as 4.30 by Spitzer-Fan model. Optical band gap of PbWO4 was found to be 3.24 eV from the dielectric relaxation time spectrum. Moreover, existence of two critical points with energies of 3.70 and 4.58 eV was revealed from the analyses of extinction coefficient and second derivative of the dielectric function. These levels were considered to be due to creation of cation exciton (Pb2+ 6s(2) - Pb2+ 6s6p) and transitions in the [WO4](2-) group.Article Citation - WoS: 16Citation - Scopus: 15Effect of Temperature on Band Gap of Pbwo4 Single Crystals Grown by Czochralski Method(Iop Publishing Ltd, 2022) Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.The structural and optical properties of PbWO4 single crystals grown by Czochralski method and investigated by x-ray diffraction (XRD) and transmission experiments. XRD pattern presented well-defined and intensive peaks related with tetragonal scheelite structure. Transmission experiments were accomplished for the first time at various temperatures between 10 and 300 K on PbWO4 single crystals to reveal variation of band gap with temperature. Derivative spectroscopy method presented the experimentally observed band gap energy as increasing from 3.20 to 3.35 eV when the temperature was decreased to 10 K from room temperature. The revealed energy was associated with transition taking place between delocalized and trap levels. Temperature-band gap energy plot was analyzed by Varshni and Bose-Einstein models. The fitting processes under the light of these models revealed optical characteristics of absolute zero experimentally observed band gap, variation rate of gap energy with temperature and Debye temperature of PbWO4 single crystal.

