2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 7Citation - Scopus: 7Temperature dependent bandgap in NaBi(WO4)2 single crystals(Elsevier Gmbh, 2022) Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.The double tungstates have been an attractive research interest due to their optoelectronic applications. In the present work, NaBi(WO4)(2), one of the members of double tungstates family, was grown by Czochralski method as single crystal form and optically investigated. X-ray diffraction pattern presented three peaks associated with tetragonal scheelite crystalline structure. Optical properties of the crystal were studied by performing temperature-dependent transmission measurements between 10 and 300 K. The shift of the absorption edge to higher energies was observed with decrease of temperature. The analyses indicated that direct band gap energy increases from 3.50 to 3.60 eV when the temperature was decreased from room temperature to 10 K. The temperature dependency of bandgap was studied considering the Varshni model and fitting of the experimental data under the light of model presented the optical parameters of band gap energy at 0 K, rate of band gap change with temperature and Debye temperature as E-g(0) = 3.61 eV, gamma = 8.83 x 10(-4) eV/K and beta = 456 K, respectively. Urbach energies were also determined from the analyses as 122 and 113 meV for 10 and 300 K experimental data, respectively.Article Citation - WoS: 7Citation - Scopus: 6Investigation of Optical Characteristics of Pbmoo4 Single Crystals by Spectroscopic Ellipsometry(Elsevier Gmbh, 2022) Delice, S.; Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.In this study, we investigated the optical properties of PbMoO4 single crystals grown by Czochralski method. Spectroscopic ellipsometry measurements were carried out in the energy region between 1.0 and 5.5 eV at room temperature. X-ray diffraction measurements were achieved for structural characterization. The resulted pattern exhibited one peak belonging to (200) plane. Spectral variations of complex dielectric function, complex refractive index, absorption coefficient and dissipation function were obtained from the analyses of ellipsometry data. Real part of dielectric function increased up to 4.0 eV and then decreased suddenly at above this value. Zero frequency refractive index and dielectric constant were found to be 2.04 and 4.15, respectively. High frequency dielectric constant was determined to be 4.36. Optical band gap of PbMoO4 crystals was calculated as 3.09 eV. Two critical points with energies of 3.57 and 4.34 eV were estimated from the analyses of second-energy derivative spectra of real and imaginary parts of dielectric function. It was determined that [MoO4]2- complexes and charge transfer from Pb2+ ions into the neighboring Mo groups were responsible for these interband transitions. Dissipation function increased with increasing photon energy.

