Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 25
    Citation - Scopus: 32
    High-Dimensional Optimization of Large-Scale Steel Truss Structures Using Guided Stochastic Search
    (Elsevier Science inc, 2021) Azad, Saeid Kazemzadeh; Aminbakhsh, Saman
    Despite a plethora of truss optimization algorithms devised in the recent literature of structural optimization, still high-dimensional large-scale truss optimization problems have not been properly tackled basically due to the excessive computational effort required to handle the foregoing instances. In this study, application of a recently developed design-driven heuristic, namely guided stochastic search (GSS), is extended to a more challenging class of truss optimization problems having thousands of design variables. Two variants of the algorithm, namely GSSA and GSSB, have been employed for sizing optimization of four high-dimensional examples of steel trusses, i.e., a 2075-member single-layer onion dome, a 2688-member double-layer open dome, a 6000-member doublelayer scallop dome, and a 15048-member double-layer grid as per AISC-LRFD specification. The numerical results obtained indicate the efficiency of GSSA and GSSB in handling high-dimensional instances of large-scale steel trusses with up to 15048 discrete design variables.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 11
    A Standard Benchmarking Suite for Structural Optimization Algorithms: Iscso 2016-2022
    (Elsevier Science inc, 2023) Azad, Saeid Kazemzadeh; Azad, Saeıd Kazemzadeh; Azad, Sina Kazemzadeh; Azad, Saeıd Kazemzadeh; Department of Civil Engineering; Department of Civil Engineering
    Benchmarking is an essential part of developing efficient structural optimization techniques. Despite the advent of numerous metaheuristic techniques for solving truss optimization problems, benchmarking new algorithms is often carried out using a selection of classic test examples which are indeed unchallenging for contemporary sophisticated optimization algorithms. Furthermore, the limited optimization results available in the literature on new test examples are usually not accurately comparable. This is typically due to the lack of infromation about the performance of the investigated algorithms and the inconsistencies between the studies in terms of adopted test examples for benchmarking, optimization problem formulation, maximum number of objective function evaluations and other similar issues. Accordingly, there exists a need for developing new standard test suites composed of easily reproducible challenging test examples with rigorous and comparable performance evaluation results of algorithms on these test suites. To this end, the present work aims to propose a new baseline for benchmarking structural optimization algorithms, using a set of challenging sizing and shape optimization problems of truss structures selected from the international student competition in structural optimization (ISCSO) instances. The most recent six structural optimization examples from the ISCSO are tackled using a representative metaheuristic structural optimization algorithm. The statistical results of all the optimization runs using the proposed benchmarking suite are provided to pave the way for more rigorous benchmarking of structural optimization algorithms.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    MO-ISCSO: A Challenging Benchmark Test Suite for Large-Scale Multi-Objective Structural Optimization
    (Elsevier Science inc, 2025) Azad, Saeid Kazemzadeh; Azad, Sina Kazemzadeh
    Current studies on the development of multi-objective algorithms for optimization of truss structures mainly depend on small-scale classic benchmark instances. This paper highlights the importance of establishing standard large-scale multi-objective structural optimization benchmarking suites for accurate validation of the proposed algorithms. A new benchmark test suite, called MO-ISCSO, is proposed for large-scale multi-objective structural optimization, based on the most recent optimization problems of the international student competition in structural optimization (ISCSO). Owing to the very small feasibility ratios of the MO-ISCSO instances, the effect of presence of feasible designs in the initial population of NSGA-II, GDE3, and AR-MOEA multi-objective optimization algorithms is investigated using the proposed test suite. The obtained numerical results indicate that seeding the initial population with feasible solutions helps the foregoing algorithms maintain a better balance between convergence and diversity. The statistical results form a baseline for future studies on developing efficient multi-objective structural optimization techniques.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 10
    Multi-Stage Guided Stochastic Search for Optimization and Standardization of Free-Form Steel Double-Layer Grids
    (Elsevier Science inc, 2021) Azad, Saeid Kazemzadeh; Aminbakhsh, Saman; Shaban, Samer S. S.
    There has been a growing interest in the use of free-form structures with irregularly curved yet aesthetically pleasing configurations in the recent decades. Although design optimization of regular steel grids has been well addressed in the literature of structural optimization, still limited work has been devoted to optimum design of real-size free-form grid structures. On the one hand, a main obstacle when dealing with real-size free-form steel grids is the excessive computational effort associated with contemporary evolutionary optimization algorithms. On the other hand, it is generally perceived that the obtained final designs using conventional optimization algorithms may not necessarily be favored in practice if certain provisions are not stipulated by the algorithm to preclude an abundance of distinct steel section sizes in the final design. Hence, instead of offering a single optimum or near optimum design, it would be more desirable to provide the designer or decision maker with a Pareto front set of non-dominated design alternatives taking into account both the minimum weight as well as the assortment of available steel section sizes in the final design. Accordingly, in this paper, a computationally efficient multi-stage guided stochastic search algorithm is proposed for optimization and standardization of realsize free-form steel double-layer grids. A gradual design-oriented section elimination approach is followed where in the first optimization stage, a complete set of commercially available steel sections is introduced to the algorithm and in the succeeding stages, the size of section list is reduced by eliminating the redundant sizes. Two variants of the algorithm are employed to demonstrate the usefulness of the proposed technique in challenging test examples of free-form steel double-layer grids, and the obtained Pareto fronts are plotted to illustrate the trade-off between minimum weight and assortment of steel section sizes in the final design.