2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 4Citation - Scopus: 4Characterization of the Ge/Bi2< Interfaces(Univ Fed Sao Carlos, dept Engenharia Materials, 2019) Alharbi, Seham Reef; Qasrawi, Atef FayezIn this article, the properties of the Ge/Bi2O3 interfaces as microwave cavities are reported and discussed. The interface is composed of monoclinic Bi2O3 films grown onto polycrystalline cubic Ge substrate. It is observed that consistent with the theoretical design of the energy band diagram, the experimental current-voltage characteristics of the Yb/Ge/Bi2O3/C hybrid device structure exhibits electronic switching property. In addition, the capacitance, resistance and microwave cutoff frequency spectral analysis in the frequency domain of 0.01-1.50 GHz revealed a frequency dependent tunability of the device. Moreover, while the Yb/Bi2O3/C interface displays negative capacitance effect, the Yb/Ge/Bi2O3/C interfaces are also found to have the ability of altering the resistance up to three orders of magnitude. Such property allowed reaching a cut off frequency up to 116 GHz. The electronic features of the device indicated that the Ge/Bi2O3 interfaces are attractive for production of negative capacitance field effect transistors and band pass/reject filters.Article Citation - WoS: 10Citation - Scopus: 9Structural and Optoelectronic Properties of Moo3 Interfaces(Wiley-v C H verlag Gmbh, 2019) Alharbi, Seham Reef; Qasrawi, Atef FayezIn this article, the authors discuss the growth nature, the structural, optical and dielectric properties of CuSe thin films deposited onto MoO3 substrate. The films are studied by the X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and ultraviolet-visible light spectroscopy techniques. CuSe thin films are observed to exhibit strained nature of growth when grown onto MoO3 amorphous substrates. Optically, the MoO3/CuSe films are found to exhibit conduction (Delta Ec) and valence (Delta Ev) band offsets of values of 3.70 and 3.42 eV, respectively. In addition, a remarkable increase in the absorbability (R lambda) of MoO3 by 72 times at 3.0 eV is obtained as a result of coating it with CuSe. The Delta Ec, Delta Ev, and R lambda values are significantly high and nominate the MoO3/CuSe interfaces for use in many optoelectronic applications. In addition, the dielectric analysis shows that the MoO3/CuSe heterojunction exhibit optical conductivity parameters that make it suitable for use in optical communications. Particularly, the Drude-Lorentz modeling of the imaginary part of the dielectric constant for the MoO3/CuSe interfaces displays mobility and plasmon frequency values of 7.76 cm(2) V-1 s(-1) and 3.78 GHz, respectively. The obtained plasmon frequency values indicate the applicability of this device in microwave technology.

