Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 14
    Citation - Scopus: 14
    A novel terthienyl based polymer electrochrome with peripheral BODIPY
    (Elsevier Sci Ltd, 2012) Algi, Fatih; Cihaner, Atilla
    Design, synthesis and electropolymerization of a new hybrid material based on terthienyl system bearing BODIPY appendage are reported. This electrochemically polymerized unique combination readily gives an electrochromic polymer with a narrow optical band gap (1.71 eV). The electrochrome exhibits purple color when neutralized and sky blue color when oxidized in a monomer-free electrolyte solution containing 0.1 M tetrabutylammonium tetrafluoroborate dissolved in acetonitrile. Spectroscopic and electrochemical features of the electroactive polymer electrochrome indicate that it is a promising candidate for electrochromic device and display applications. (C) 2012 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 21
    Citation - Scopus: 21
    Synthesis and Properties of a Novel Redox Driven Chemiluminescent Material Built on a Terthienyl System
    (Pergamon-elsevier Science Ltd, 2009) Atilgan, Nurdan; Algi, Fatih; Onal, Ahmet M.; Cihaner, Atilla
    A novel redox driven chemiluminescent material built on a terthienyl system, namely 5,7-di-ethylenedioxythiophen-2-yl-2,3-dihydro-thieno[3,4-d]pyridazine-1,4-dione (ETE-Lum), which is soluble in both organic media and basic aqueous solution was synthesized and characterized. Furthermore, its polymer, PETE-Lum, which is one of the most rare examples of chemiluminescent polymeric materials bearing a pyridazine unit, was obtained successfully by electrochemical means. Both of the materials give chemiluminescence either by treatment with oxidants (H2O2 and/or KMnO4) or by the application of a potential pulse. (C) 2009 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 30
    Citation - Scopus: 31
    A New Low-Voltage Polymeric Electrochromic
    (Elsevier Sci Ltd, 2010) Pamuk, Melek; Tirkes, Seha; Cihaner, Atilla; Algi, Fatih
    Design, synthesis, and properties of a novel donor-acceptor-donor type low-voltage-driven green polymeric electrochrome, P1, which is based on 8-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-11-(2,3-dihydrothieno[3,4-b][l,4]dioxin-7-yl)acenaphtho[1,2-b]quinoxaline (1) are highlighted. It is noted that P1 has an ambipolar (n- and p-doping processes) character in 0.1 M tetrabutylammonium hexafluorophosphate/dichloromethame solution and switches to a transmissive blue state upon oxidation. Furthermore, this new polymeric electrochromic candidate exhibits high redox stability, high coloration efficiency and/or contrast ratio, high percent transmittance (%T) and low response time (1.0 s) with a band gap of 1.10 eV-1.25 eV. (C) 2009 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 9
    Design, Synthesis, Photochromism and Electrochemistry of a Novel Material With Pendant Photochromic Units
    (Pergamon-elsevier Science Ltd, 2014) Algi, Melek Pamuk; Cihaner, Atilla; Algi, Fatih
    In the present work, the synthesis, photochromism and electrochemistry of a novel material 1, 1-(4-[3,4-bis(2,5-dimethyl-3-thienyl)cyclopent-3-en-1-yl]phenyl)-2,5-di-2-thienyl-1H-pyrrole, with pendant dithienylethene (DTE) photochromic units are described. It should be noted that the system I can be reversibly and efficiently switched between open (1o) and closed (1c) states by light in both solution and in the solid poly(methyl methacrylate) matrix. It is also noteworthy that the two isomers (1o and 1c) of this novel system 1 can be smoothly polymerized on ITO by electrochemical means. Surprisingly, the DTE unit in I does not retain its photochemical switching properties after immobilization onto ITO. The morphology of the polymer film was investigated by AFM analysis. Furthermore, it was found that the polymer exhibited remarkable electrochromic features that can be switched from green in the neutral state to violet state under applied external potentials without disturbing the photochromic units. (C) 2014 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 15
    Atomistic Engineering of Chemiluminogens: Synthesis, Properties and Polymerization of 2,3-Dihydro Scaffolds
    (Springer/plenum Publishers, 2017) Algi, Melek Pamuk; Tirkeş, Seha; Oztas, Zahide; Cihaner, Atilla; Tirkes, Seha; Cihaner, Atilla; Algi, Fatih; Tirkeş, Seha; Cihaner, Atilla; Chemical Engineering; Chemical Engineering
    Two chemiluminescent compounds containing 2,5-di(thien-2-yl)pyrrole and pyridazine units, namely 5,7-di(thiophen-2-yl)-2,3-dihydro-1H-pyrrolo[3,4-d]pyridazine-1,4(6H)-dione (5) and 6-phenyl-5,7-di(thiophen-2-yl)-2,3-dihydro-1H-pyrrolo[3,4-d]pyridazine-1,4(6H)-dione (6), were successfully synthesized and electrochemically polymerized. The compounds have chemiluminescent properties and glow in the presence of hydrogen peroxide in basic medium. The intensity of the glow can be increased dramatically by using Fe3+ ions, hemin (1.0 ppm) or blood samples (1.0 ppm) as catalyst. The compounds 5 and 6 have one well-defined irreversible oxidation peak at 1.08 V and 1.33 V vs Ag/AgCl, respectively. Electrochemical polymerization of both 5 and 6 were carried out successfully by repeating potential scanning in the presence of BF3. Et2O in an electrolyte solution of 0.1 M LiClO4 dissolved in acetonitrile. The electronic band gaps (E-g) of the polymers P5 and P6 were found to be 2.02 eV and 2.16 eV, respectively. On the other hand, the corresponding polymers are electroactive and exhibited electrochromic features.