Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 33
    Citation - Scopus: 35
    Exact Solution of Rotating Fgm Shaft Problem in the Elastoplastic State of Stress
    (Springer, 2007) Akis, Tolga; Eraslan, Ahmet N.
    Plane strain analytical solutions to estimate purely elastic, partially plastic and fully plastic deformation behavior of rotating functionally graded (FGM) hollow shafts are presented. The modulus of elasticity of the shaft material is assumed to vary nonlinearly in the radial direction. Tresca's yield criterion and its associated flow rule are used to formulate three different plastic regions for an ideal plastic material. By considerina different material compositions as well as a wide range of bore radii, it is demonstrated in this article that both the elastic and the elastoplastic responses of a rotating FGM hollow shaft are affected significantly by the material nonhomogeneity.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 6
    A Study of Shrink-Fitting for Optimal Design of Multi-Layer Composite Tubes Subjected To Internal and External Pressure
    (Springer, 2019) Azad, Saeid Kazemzadeh; Akis, Tolga
    This paper addresses the effect of shrink-fitting on the optimal design of pressurized multi-layer composite tubes. Analytical solutions for structural response calculations are provided for axially constrained two- and three-layer shrink-fitted tubes under both internal and external pressure. A recently developed numerical evolutionary optimization algorithm is employed for weight and cost minimization of these assemblies. In order to investigate the effect of shrink-fitting, first, optimal material selection and thickness optimization of tightly fitted tubes, under either internal or both internal and external pressure, are accomplished without shrink-fitting. Next, under the same loading and boundary conditions the assemblies are optimized where shrink-fitting parameters are taken into account for weight and cost minimization. The numerical results obtained for multi-layer composite tubes with and without shrink-fitting indicate that more economical or lightweight assemblies can be obtained if shrink-fitting parameters are treated as additional design variables of the optimization problem. Furthermore, it is observed that considering the shrink-fitting parameters for optimal design becomes more advantageous in the test cases with a higher ratio of internal pressure to external pressure.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Structural Design Optimization of Multi-Layer Spherical Pressure Vessels: a Metaheuristic Approach
    (Springer, 2019) Akis, Tolga; Azad, Saeid Kazemzadeh
    This study addresses the optimum design problem of multi-layer spherical pressure vessels based on von Mises yield criterion. In order to compute the structural responses under internal pressure, analytical solutions for one-, two-, and three-layer spherical pressure vessels are provided. A population-based metaheuristic algorithm is reformulated for optimum material selection as well as thickness optimization of multi-layer spherical pressure vessels. Furthermore, in order to enhance the computational efficiency of the optimization algorithm, upper bound strategy is also integrated with the algorithm for reducing the total number of structural response evaluations during the optimization iterations. The performance of the algorithm is investigated through weight and cost minimization of one-, two- and three-layer spherical pressure vessels and the results are presented in detail. The obtained numerical results, based on different internal pressures as well as vessel sizes, indicate the usefulness and efficiency of the employed methodology in optimum design of multi-layer spherical pressure vessels.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Metaheuristic Optimization of Rotating Multilayer Composite Tubes Under Internal Heating and Pressure
    (Springer, 2022) Azad, Saeid Kazemzadeh; Akis, Tolga
    Although analysis/design of multilayer assemblies has been always an active field of research, works on the optimal design of rotating multilayer composite tubes are very limited. This paper addresses the design optimization of rotating multilayer composite tubes under internal heating and pressure. For determining the structural responses, analytical solutions are provided based on different boundary conditions. The automated selection of optimal material as well as thickness optimization of pressurized multilayer assemblies is carried out under different angular speed and internal heating conditions using a metaheuristic algorithm. The corresponding optimum design for each angular speed as well as internal heating condition is sought, and the numerical results are discussed. The study provides general guidelines for conceptual design of rotating multilayer composite tubes subjected to internal heating and pressure.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 7
    Lessons Learned From Four Recent Turkish Earthquakes: Sivrice-Elazığ, Aegean Sea, and Dual Kahramanmaraş
    (Springer, 2024) Tunc, Goekhan; Mertol, Halit Cenan; Akis, Tolga
    T & uuml;rkiye is located in an earthquake-prone region where almost all of its population resides in risky areas. In the past 100 years, there has been a strong earthquake every two years and a major one every 3 years. This study investigates the impact of four recent earthquakes, that occurred between 2020 and 2023, on reinforced concrete (RC) buildings. The first, Sivrice-Elaz & imath;& gbreve;, struck the eastern part of T & uuml;rkiye on January 24, 2020, with a moment magnitude of Mw = 6.8. The second, the Aegean Sea, hit the western part of the country on October 30, 2020, with an Mw of 6.6. The third and fourth are the February 6, 2023 dual Kahramanmara & scedil; earthquakes with Mws of 7.7 and 7.6, which struck the eastern part of T & uuml;rkiye approximately 9 h apart. Immediately following these earthquakes, a technical team investigated each of the damaged areas. This study summarizes their findings on RC buildings. It was discovered that the majority of the collapsed or severely damaged RC buildings were constructed before 2000. The main reasons for this included technological limitations, specifically on producing high-quality concrete, as well as a lack of public policies and enforced laws in the construction sector to maintain an acceptable international standard. Furthermore, the damage patterns of buildings from these four earthquakes indicated poor workmanship, low material quality, improper structural framing, a common appearance of soft and weak stories, the inadequate use of shear walls, and defective reinforcement configuration. The significance of soil studies and the enforcement of building inspections are also discussed, along with the earthquake codes. The study concludes that the maximum peak ground accelerations from the dual Kahramanmara & scedil; earthquakes were almost triple the code-prescribed values. Therefore, it is recommended that the current mapped spectral acceleration values be revised and that buildings constructed before 2000 should be prioritized while determining their structural performances.