Lessons learned from four recent Turkish earthquakes: Sivrice-Elazığ, Aegean Sea, and Dual Kahramanmaraş

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Research Projects

Organizational Units

Organizational Unit
Civil Engineering
(2000)
The Atılım University Department of Civil Engineering was founded in 2000 as a pioneer for the Departments of Civil Engineering among the foundation schools of Ankara. It offers education in English. The Department of Civil Engineering has an academic staff qualified in all areas of the education offered. In addition to a high level of academic learning that benefits from learning opportunities through practice at its seven laboratories, the Department also offers a Cooperative Education program conducted in cooperation with renowned organizations in the construction sector. Accredited by MÜDEK (Association of Evaluation and Accreditation of Engineering Programs) (in 2018), our Department has been granted the longest period of accreditation to ever achieve through the association (six years). The accreditation is recognized by ENAEE (European Network for Accreditation of Engineering Education), and other international accreditation boards.

Journal Issue

Abstract

T & uuml;rkiye is located in an earthquake-prone region where almost all of its population resides in risky areas. In the past 100 years, there has been a strong earthquake every two years and a major one every 3 years. This study investigates the impact of four recent earthquakes, that occurred between 2020 and 2023, on reinforced concrete (RC) buildings. The first, Sivrice-Elaz & imath;& gbreve;, struck the eastern part of T & uuml;rkiye on January 24, 2020, with a moment magnitude of Mw = 6.8. The second, the Aegean Sea, hit the western part of the country on October 30, 2020, with an Mw of 6.6. The third and fourth are the February 6, 2023 dual Kahramanmara & scedil; earthquakes with Mws of 7.7 and 7.6, which struck the eastern part of T & uuml;rkiye approximately 9 h apart. Immediately following these earthquakes, a technical team investigated each of the damaged areas. This study summarizes their findings on RC buildings. It was discovered that the majority of the collapsed or severely damaged RC buildings were constructed before 2000. The main reasons for this included technological limitations, specifically on producing high-quality concrete, as well as a lack of public policies and enforced laws in the construction sector to maintain an acceptable international standard. Furthermore, the damage patterns of buildings from these four earthquakes indicated poor workmanship, low material quality, improper structural framing, a common appearance of soft and weak stories, the inadequate use of shear walls, and defective reinforcement configuration. The significance of soil studies and the enforcement of building inspections are also discussed, along with the earthquake codes. The study concludes that the maximum peak ground accelerations from the dual Kahramanmara & scedil; earthquakes were almost triple the code-prescribed values. Therefore, it is recommended that the current mapped spectral acceleration values be revised and that buildings constructed before 2000 should be prioritized while determining their structural performances.

Description

Tunc, Gokhan/0000-0002-8307-1060

Keywords

Earthquakes, Reinforced concrete buildings, Structural damage patterns, Earthquake performance, T & uuml, rkiye

Turkish CoHE Thesis Center URL

Citation

0

WoS Q

Q2

Scopus Q

Q1

Source

Volume

Issue

Start Page

End Page

Collections