3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 16Citation - Scopus: 18Modeling and Forecasting of Monthly Pm2.5 Emission of Paris by Periodogram-Based Time Series Methodology(Springer, 2021) Akdi, Yilmaz; Golveren, Elif; Unlu, Kamil Demirberk; Yucel, Mustafa ErayIn this study, monthly particulate matter (PM2.5) of Paris for the period between January 2000 and December 2019 is investigated by utilizing a periodogram-based time series methodology. The main contribution of the study is modeling the PM2.5 of Paris by extracting the information purely from the examined time series data, where proposed model implicitly captures the effects of other factors, as all their periodic and seasonal effects reside in the air pollution data. Periodicity can be defined as the patterns embedded in the data other than seasonality, and it is crucial to understand the underlying periodic dynamics of air pollutants to better fight pollution. The method we use successfully captures and accounts for the periodicities, which could otherwise be mixed with seasonality under an alternative methodology. Upon the unit root test based on periodograms, it is revealed that the investigated data has periodicities of 1 year and 20 years, so harmonic regression is utilized as an alternative to Box-Jenkins methodology. As the harmonic regression displayed a better performance both in and out-of-sample forecasts, it can be considered as a powerful alternative to model and forecast time series with a periodic structure.Article Citation - WoS: 18Citation - Scopus: 20Periodicity in Precipitation and Temperature for Monthly Data of Turkey(Springer Wien, 2021) Akdi, Yilmaz; Unlu, Kamil DemirberkIn this study, we model and forecast monthly average temperature and monthly average precipitation of Turkey by employing periodogram-based time series methodology. We compare autoregressive integrated moving average methodology and harmonic regression. We show that harmonic regression performs better than the classical methodology in both time series. Also, we find that the monthly average temperature and monthly average precipitation have two different periodic structures of 6 months and 12 months which coincide with the seasonal pattern of the time series.Article Citation - WoS: 9Citation - Scopus: 7Identifying the Cycles in Covid-19 Infection: the Case of Turkey(Taylor & Francis Ltd, 2023) Akdi, Yilmaz; Karamanoglu, Yunus Emre; Unlu, Kamil Demirberk; Bas, CemThe new coronavirus disease, called COVID-19, has spread extremely quickly to more than 200 countries since its detection in December 2019 in China. COVID-19 marks the return of a very old and familiar enemy. Throughout human history, disasters such as earthquakes, volcanic eruptions and even wars have not caused more human losses than lethal diseases, which are caused by viruses, bacteria and parasites. The first COVID-19 case was detected in Turkey on 12 March 2020 and researchers have since then attempted to examine periodicity in the number of daily new cases. One of the most curious questions in the pandemic process that affects the whole world is whether there will be a second wave. Such questions can be answered by examining any periodicities in the series of daily cases. Periodic series are frequently seen in many disciplines. An important method based on harmonic regression is the focus of the study. The main aim of this study is to identify the hidden periodic structure of the daily infected cases. Infected case of Turkey is analyzed by using periodogram-based methodology. Our results revealed that there are 4, 5 and 62 days cycles in the daily new cases of Turkey.

