2 results
Search Results
Now showing 1 - 2 of 2
Master Thesis Zaman skalasında interpolasyon(2022) Jaddoa, Najlaa Abd Zaıd Jaddoa; Adıgüzel, Rezan Sevinik; Erhan, İnciBu tezde, zaman skalasında interpolasyon konusunu inceledik. Keyfi bir zaman skalası üzerinde, Lagrange, sigma-Lagrange, Hermite, sigma-Hermite, Newton ve sigma-Newton polinomlarını tanımladık. Bölünen ve sigma-bölünen farkları tanımlayarak, verilen bir veri kümesi için, Hermite polinomunu kolay yoldan elde etmek amacıyla bölünen farklar tablosu oluşturduk. Verilen bir veri kümesini, zaman skalasının yapısına bağlı olarak polinom olmayabilen fonksiyonlar olan sigma-polinomları ile temsil etmek (interpole etmek) alışılmadık bir yöntemdir. Bu şekilde, zaman skalasında interpolasyon için farklı bir bakış açısı sunmaktayız. Çeşitli zaman skalalarında birçok örnek inceledik. Bu örnekler Matlab ile elde edilen sayısal hesaplamalar ve ilgili grafikler ile desteklenmiştir.Master Thesis Hermite ve q-hermite I polinomlarının özellikleri ve aralarındaki limit ilişkileri üzerine(2017) Alwhaıshı, Sakına; Adıgüzel, Rezan Sevinik; Turan, MehmetBu tezde Hermite polinomları ve ayrık q-Hermite I polinomlarının bazı önemli özellikleri sunulmaktadır. Bu polinomların özellikleri aynı tarzda ele alınacaktır. Ayrık q-Hermite I polinomları, Hermite polinomlarının q-analoğudur. Bu tip polinomlar klasik ortogonal polinomlar ve q-analoğunun önemli bir sınıfıdır. Bu tezdeki temel düşünce, Hermite polinomları ve bunların ayrık versiyonlarının sahip oldukları hipergeometrik tipte diferansiyel ve q-fark denklemleri, üç terimli yineleme bağıntısı, Rodrigues formülü, ortogonal ilişkileri, üreteç fonksiyon özellikleri üzerine çalışmaktır. Hermite polinomları, q -> 1 limit durumunda ayrık q-Hermite I polinomlarından elde edilmektedir. Bu tezde sunulan her bir özellik için Hermite polinomları ve ayrık q-Hermite I polinomları arasındaki limit ilişkisi ayrıntılı olarak ele alınacaktır.
