Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 35
    Citation - Scopus: 43
    Lyapunov-Type Inequalities for Mixed Non-Linear Forced Differential Equations Within Conformable Derivatives
    (Springer, 2018) Abdeljawad, Thabet; Agarwal, Ravi P.; Alzabut, Jehad; Jarad, Fahd; Ozbekler, Abdullah
    We state and prove new generalized Lyapunov-type and Hartman-type inequalities fora conformable boundary value problem of order alpha is an element of (1,2] with mixed non-linearities of the form ((T alpha X)-X-a)(t) + r(1)(t)vertical bar X(t)vertical bar(eta-1) X(t) + r(2)(t)vertical bar x(t)vertical bar(delta-1) X(t) = g(t), t is an element of (a, b), satisfying the Dirichlet boundary conditions x(a) = x(b) = 0, where r(1), r(2), and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0 < eta < 1 < delta < 2. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative T-alpha(a) is replaced by a sequential conformable derivative T-alpha(a) circle T-alpha(a), alpha is an element of (1/2,1]. The potential functions r(1), r(2) as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.
  • Article
    Citation - WoS: 79
    Citation - Scopus: 82
    A Generalized Contraction Principle With Control Functions on Partial Metric Spaces
    (Pergamon-elsevier Science Ltd, 2012) Abdeljawad, Thabet; Karapinar, Erdal; Tas, Kenan
    Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational semantics of data flow networks. In this article, we prove a generalized contraction principle with control functions phi and psi on partial metric spaces. The theorems we prove generalize many previously obtained results. We also give some examples showing that our theorems are indeed proper extensions. (C) 2011 Elsevier Ltd. All rights reserved.