3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 26Citation - Scopus: 27Performance of an Ht-Pemfc Having a Catalyst With Graphene and Multiwalled Carbon Nanotube Support(Wiley, 2019) Alpaydin, Guvenc Umur; Devrim, Yilser; Colpan, C. OzgurIn this study, the effect of multiwalled carbon nanotube and graphene nanoplatelet-based catalyst supports on the performance of reformate gas-fed polybenzimidazole (PBI)-based high-temperature proton exchange membrane fuel cell (HT-PEMFC) was investigated. In addition, the effect of several microwave conditions on the performance of the Pt-Ru/multiwalled carbon nanotube (MWCNT)-graphene nanoplatelet (GNP) catalyst was assessed. Through X-ray diffraction, thermal gravimetric analysis, transmission electron microscopy, scanning electron microscopy, and energy dispersive spectroscopy, the catalysts' chemical structure and morphology were characterized. Cyclic voltammetry analysis was used for the electrochemical characterization of catalysts through an electrochemical cell with three electrodes connected to a potentiostat. The results showed that the best performing catalyst is the catalyst produced using 800-W power for 40 seconds. The electrochemically active surface area values of this catalyst ranged from 54 to 45 m(2)/g. Single-cell performance tests of the HT-PEMFC were then carried out. In these tests, reformate gas mixture, consisting of H-2, CO2, and CO, was fed to the anode side at 160 degrees C without humidification. These tests for the best performing catalyst yielded peak power density of 0.280 W/cm(2) and current density (at 0.6 V) of 0.180 A/cm(2) in the H-2/air environment and peak power density of 0.266 W/cm(2) and current density (at 0.6 V) of 0.171 A/cm(2) in the reformate gas/air environment. As a result of the experiments, it was found that Pt-Ru/MWCNT-GNP hybrid material is a suitable catalyst for HT-PEMFC.Conference Object Citation - WoS: 28Citation - Scopus: 34Enhancement of Direct Methanol Fuel Cell Performance Through the Inclusion of Zirconium Phosphate(Pergamon-elsevier Science Ltd, 2017) Ozden, Adnan; Ercelik, Mustafa; Ozdemir, Yagmur; Devrim, Yilser; Colpan, C. OzgurNafion/zirconium hydrogen phosphate (ZrP) composite membranes containing 2.5 wt.% ZrP (NZ-2.5) or 5 wt.% ZrP (NZ-5) were prepared to improve the performance of a direct methanol fuel cell (DMFC). The influence of ZrP content on the Nafion matrix is assessed through characterization techniques, such as Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and water uptake measurement. Performance testings of the DMFCs based on these composite membranes as well as commercial Nafion (R) 115 membrane were performed using a computer aided fuel cell test station for different values of cell temperature (40 degrees C, 60 degrees C, 80 degrees C, and 100 degrees C) and methanol concentration (0.75 M, 1.00 M, and 1.50 M). Characterization studies indicated that incorporation of ZrP into polymer matrix enhanced the water uptake and proton conductivity values of Nafion membrane. The results of the performance tests showed that the Membrane Electrode Assembly (MEA) having NZ-2.5 provided the highest performance with the peak power density of 551.52 W/m(2) at 100 degrees C and 1.00 M. Then, the performances of the MEAs having the same NZ-2.5 membrane but different cathode catalysts were investigated by fabricating two different MEAs using cathode catalysts made of Pt/C-ZrP and Pt/C (HiSPEC (R) 9100). According to the results of these experiments, the MEA having NZ-2.5 membrane and Pt/C (HiSPEC (R) 9100) cathode catalyst containing 10 wt.% of ZrP exhibited the highest performance with the peak power density of 620.88 W/m(2) at 100 degrees C and 1.00 M. In addition, short-term stability tests were conducted for all the MEAs. The results of the stability tests revealed that introduction of ZrP to commercial (HiSPEC (R) 9100) cathode catalyst improves its stability characteristics. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Article Citation - WoS: 2Citation - Scopus: 2Thermoeconomic Analysis of an Integrated Membrane Reactor and Carbon Dioxide Capture System Producing Decarbonized Hydrogen(Pergamon-elsevier Science Ltd, 2025) Atak, Yagmur Nalbant; Ince, Alper Can; Colpan, C. Ozgur; Iulianelli, Adolfo; Serincan, Mustafa Fazil; Pasaogullari, UgurIn this study, a novel thermo-economic analysis on a membrane reactor adopted to generate hydrogen, coupled to a carbon-dioxide capture system, is proposed. Exergy destruction, fuel, and environmental as well as purchased equipment costs have been accounted to estimate the cost of hydrogen production in the aforementioned integrated plant. It has been found that the integration of the CO2 capture system with the membrane reactor is responsible for the reduction of the hydrogen production cost by 12 % due to the decrease in environmental penalty cost. In addition, the effects of operating parameters (steam-to-carbo ratio and biogas temperature) on the hydrogen production cost are investigated. Hence, this work demonstrates that the latter can be decreased by approximately 2 $/kgH2 when steam to carbon ratio increases from 1.5 to 4. The analyses reveal that steam-tocarbo ratio increases exergy destruction cost, affecting consequently also the hydrogen production cost. However, from a thermodynamic point of view, it enhances the hydrogen production in the membrane reactor, mutually lowering the hydrogen production cost. It has been also estimated that a decrease in the biogas inlet temperature from 450 to 400 degrees C can reduce the hydrogen production cost by 7 %. This study demonstrates that the fuel cost is a major economic parameter affecting commercialization of hydrogen production, while exergy destruction and environmental costs are also significant factors in determining the hydrogen production cost.

