26 results
Search Results
Now showing 1 - 10 of 26
Article Citation - WoS: 4Citation - Scopus: 5Thermoluminescence characteristics of GaSe and Ga2Se3 single crystals(Elsevier, 2022) Isik, M.; Sarigul, N.; Gasanly, N. M.GaSe and Ga2Se3 are semiconducting compounds formed from same constituent elements. These compounds have been attractive due to their optoelectronic and photovoltaic applications. Defects take remarkable attention since they affect quality of semiconductor devices. In the present paper, deep defect centers in GaSe and Ga2Se3 single crystals grown by Bridgman method were reported from the analyses of thermoluminescence measurements performed in the 350-675 K range. Experimental TL curves of GaSe and Ga2Se3 single crystals presented one and two overlapped peaks, respectively. The applied curve fitting and initial rise techniques were in good agreement about trap activation energies of 0.83 eV for GaSe, 0.96 and 1.24 eV for Ga2Se3 crystals. Crystalline structural properties of the grown single crystals were also investigated by x-ray diffraction measurements. The peaks observed in XRD patterns of the GaSe and Ga2Se3 crystals were well-consistent with hexagonal and zinc blende structures, respectively.Article Citation - WoS: 8Citation - Scopus: 8Thermoluminescence Properties of Zno Nanoparticles in the Temperature Range 10-300 K(Springer, 2016) Isik, M.; Yildirim, T.; Gasanly, N. M.Low-temperature thermoluminescence (TL) properties of ZnO nanoparticles grown by sol-gel method were investigated in the 10-300 K temperature range. TL glow curve obtained at 0.2 K/s constant heating rate exhibited one broad peak around 83 K. The observed peak was analyzed using curve fitting method to determine the activation energies of trapping center(s) responsible for glow curve. Analyses resulted in the presence of three peaks at 55, 85 and 118 K temperatures with activation energies of 12, 30 and 45 meV, respectively. Thermal cleaning process was applied to separate overlapped peaks and get an opportunity to increase the reliability of results obtained from curve fitting method. Heating rate dependence of glow curve was also studied for rates between 0.2 and 0.7 K/s. The shift of the peak maximum temperatures to higher values and decrease in peak height with heating rate were observed. Moreover, X-ray diffraction and scanning electron microscopy were used for structural characterization.Article Citation - WoS: 1Citation - Scopus: 1Analysis of Glow Curve of Gas0.5se0.5< Single Crystals(Elsevier Science Bv, 2015) Isik, Mehmet; Delice, Serdar; Gasanly, NizamiCharacterization of shallow trapping centers in GaS0.5Se0.5 crystals grown by a Bridgman method was carried out in the present work using thermoluminescence (TL) measurements performed in the low temperature range of 10-300 K. The activation energies of the trapping centers were obtained under the light of results of various analysis methods. The presence of three trapping centers located at 6, 30 and 72 meV was revealed. The analysis of the experimental glow curve gave reasonable results under the model that assumes slow retrapping which states the order of kinetics as b=1. Heating rate dependence of the observed TL peaks was studied for the rates between 0.4 and 1.0 K/s. Distribution of the traps was also investigated using an experimental technique based on the thermal cleaning of centers giving emission at lower temperatures. The distributed levels with activation energies increasing from 6 to 136 meV were revealed by increasing the stopping temperature from 10 to 52 K. (C) 2015 Elsevier B.V. All rights reserved.Article Citation - WoS: 10Citation - Scopus: 11Effect of Heating Rate on Thermoluminescence Characteristics of Y2o3< Nanoparticles(Elsevier, 2019) Delice, S.; Isik, M.; Gasanly, N. M.The present paper reports the results of heating rate dependencies of thermoluminescence (TL) peaks observed for Y2O3 nanoparticles in the below room temperature region. TL glow curve presented six peaks around 62.5, 91.3, 114.5, 162.7, 196.0 and 214.9 K for heating rate of 0.4 K/s. The increase of heating rate resulted in increase in peak maximum temperature and decrease in peak maximum intensity as expected according to theoretical information. Peak maximum temperature-heating rate dependencies of observed peaks were analysed according to exponential dependency relation. Curve fit and initial rise methods were applied on thermally cleaned individual peaks and activation energies of associated trap centers, frequency factors and order of kinetics were obtained from the analyses. Activation energy values of the revealed trapping centers found from both methods were in good agreement with each other. Moreover, lattice parameters, crystalline size and micro-strain of nanoparticles were investigated by means of x-ray diffraction measurements.Article Citation - WoS: 12Citation - Scopus: 13Low-Temperature Thermoluminescence in Tlgas2 Layered Single Crystals(Elsevier, 2013) Isik, M.; Bulur, E.; Gasanly, N. M.Thermoluminescence (TL) measurements have been carried out on TlGaS2 layered single crystals in the temperature range of 10-300 K. After illuminating with blue light (similar to 470 nm) at 10 K, TL glow curves exhibited peaks around 23, 36, 58, 75 and 120 K when measured with a heating rate of 0.8 K/s. The observed peaks were analyzed using curve fitting, initial rise, and peak shape methods to determine the activation energies of the associated defect centers. Analyses have revealed the presence of five defect centers with activation energies of 13, 27, 87, 94 and 291 meV. The results of all methods were found to be in good agreement with each other. The consistency between the theoretical predictions for slow retrapping and experimental results showed that the retrapping process for the observed centers was negligible. The independence of peak position from concentration of carriers trapped in defect levels was also another indication of negligible retrapping. The dependence of TL glow curves on heating rate and distribution of traps was also studied. (C) 2012 Elsevier B.V. All rights reserved.Conference Object Citation - WoS: 7Citation - Scopus: 7Synthesis, Characterizations and Investigation of Thermoluminescence Properties of Strontium Pyrophosphate Doped With Metals(Pergamon-elsevier Science Ltd, 2014) Ilkay, L. S.; Ozbayoglu, G.; Yilmaz, A.Strontium pyrophosphate, Sr2P2O7, was synthesized by solid-state synthesis method; the product was co-doped with copper-silver (Cu-Ag), copper-indium (Cu-In) and manganese-praseodymium (Mn-Pr) oxides (CuO, MnO, In2O3, Pr6O11 and AgNO3) by solid-state reaction method. The variation of dopant concentrations was investigated from 0.5 to 15% by weight. In addition to these processes, chemical characterizations of samples and the investigation of thermoluminescence (TLD) properties of strontium pyrophosphate with and without dopants were conducted. For the characterization; powder X-ray Diffraction (XRD) were implemented for phase purity of samples. Fourier Transform Infrared Spectroscopy (FTIR) was used to determine whether the bond structures were affected from the doping or not. Thermoluminescence (TLD) analyses were conducted on strontium pyrophosphate doped with different amounts of dopants for the first time. Glow curves showed that intensities were affected by different amounts of dopants. It can be concluded from that strontium pyrophosphate doped with 7% MnO and 1% Pr6O11 had the most powerful peak intensity around 160 degrees C and dosimetric property for promising application. (C) 2014 Elsevier Ltd. All rights reserved.Article Defect Characterization of Ga4se3< Layered Single Crystals by Thermoluminescence(indian Acad Sciences, 2016) Isik, M.; Delice, S.; Gasanly, N.Trapping centres in undoped Ga4Se3S single crystals grown by Bridgman method were characterized for the first time by thermoluminescence (TL) measurements carried out in the low-temperature range of 15-300 K. After illuminating the sample with blue light (similar to 470 nm) at 15 K, TL glow curve exhibited one peak around 74 K when measured with a heating rate of 0.4 K/s. The results of the various analysis methods were in good agreement about the presence of one trapping centre with an activation energy of 27 meV. Analysis of curve fitting method indicated that mixed order of kinetics dominates the trapping process. Heating rate dependence and distribution of the traps associated with the observed TL peak were also studied. The shift of peak maximum temperature from 74 to 113 K with increasing rate from 0.4 to 1.2 K/s was revealed. Distribution of traps was investigated using an experimental technique based on cleaning the centres giving emission at lower temperatures. Activation energies of the levels were observed to be increasing from 27 to 40 meV by rising the stopping temperature from 15 to 36 K.Article Citation - WoS: 5Citation - Scopus: 5Low-Temperature Thermoluminescence in Layered Structured Ga0.75in0.25< Single Crystals(Elsevier Science Sa, 2012) Isik, M.; Bulur, E.; Gasanly, N. M.Defect centers in Ga0.75In0.25Se single crystals have been studied performing the thermoluminescence measurements in the temperature range of 10-300 K. The observed glow curves were analyzed using curve fitting, initial rise, and different heating rate methods to determine the activation energies of the defect centers. Thermal cleaning process has been applied to decompose the overlapped curves. Four defect centers with activation energies of 9, 45,54 and 60 meV have been found as a result of the analysis. The capture cross sections and attempt-to-escape frequencies of the defect centers were also found using the curve fitting method under the light of theoretical predictions. The first order kinetics for the observed glow curve was revealed from the consistency between the theoretical predictions for slow retrapping and experimental results. Another indication of negligible retrapping was the independency of peak position from concentration of carriers trapped in defect levels. (C) 2012 Elsevier B.V. All rights reserved.Article Citation - WoS: 5Citation - Scopus: 5Identification of Shallow Trap Centers in Inse Single Crystals and Investigation of Their Distribution: a Thermally Stimulated Current Spectroscopy(Elsevier, 2024) Isik, M.; Gasanly, N. M.Identification of trap centers in semiconductors takes great importance for improving the performance of electronic and optoelectronic devices. In the present study, we employed the thermally stimulated current (TSC) method within a temperature range of 10-280 K to explore trap centers in InSe crystal-a material with promising applications in next-generation devices. Our findings revealed the existence of two distinct hole trap centers within the InSe crystal lattice located at 0.06 and 0.14 eV. Through the leveraging the T-stop method, we offered trap distribution parameters of revealed centers. The results obtained from the experimental methodology employed to investigate the distribution of trap centers indicated that one of the peaks extended between 0.06 and 0.13 eV, while the other spanned from 0.14 to 0.31 eV. Notably, our research uncovers a remarkable variation in trap density, spanning one order of magnitude, for every 10 and 88 meV of energy variation. The results of our research present the characteristics of shallow trap centers in InSe, providing important information for the design and optimization of InSe-based optoelectronic devices.Article Citation - WoS: 50Citation - Scopus: 54The Effect of Synthesis and Doping Procedures on Thermoluminescent Response of Lithium Tetraborate(Elsevier Science Sa, 2011) Pekpak, E.; Yilmaz, A.; Ozbayoglu, G.Lithium tetraborate has been a scientific focus since 1960s by the courtesy of the thermoluminescence property it possesses. Moreover, it is utilized in surface acoustic wave apparatuses, in sensor sector and in laser technology owing to its non-linear optical characteristics. For the uses in thermoluminescence dosimetry lithium tetraborate is activated by addition of a variety of metals as dopants. This study includes the synthesis of lithium tetraborate by two methods (high temperature solid state synthesis and water/solution assisted synthesis), doping of activators into the matrix material synthesized and characterization of the products. Lithium tetraborate is readily commercially available in TL (Themoluminescence) dosimetry; hence, the main aim in this study was to specify the effect of synthesis and doping methods on the TL response. The heating temperature for the synthesis was 750 degrees C and the retention time as selected as 4 h for both methods. The synthesis stages were followed by doping step where the compounds of Cu, Ag and In in different proportions were doped in lithium tetraborate by solid state and solution assisted doping techniques. Characterization of the product was achieved by X-ray diffraction (XRD). Fourier transform Infra Red Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) techniques. All samples prepared displayed TL response and the best TL signal was obtained from the sample produced by solid state synthesis and doped by solution assisted method with 0.1% Cu and 0.004% Ag. (C) 2010 Elsevier B.V. All rights reserved.
- «
- 1 (current)
- 2
- 3
- »

