Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 7
    Citation - Scopus: 10
    Combined Use of Ultrasonic-Assisted Drilling and Minimum Quantity Lubrication for Drilling of Niti Shape Memory Alloy
    (Taylor & Francis inc, 2023) Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, S. Engin; Yilmaz, Okan Deniz; Akar, Samet
    The drilling of shape-memory alloys based on nickel-titanium (Nitinol) is challenging due to their unique properties, such as high strength, high hardness and strong work hardening, which results in excessive tool wear and damage to the material. In this study, an attempt has been made to characterize the drillability of Nitinol by investigating the process/cooling interaction. Four different combinations of process/cooling have been studied as conventional drilling with flood cooling (CD-Wet) and with minimum quantity lubrication (CD-MQL), ultrasonic-assisted drilling with flood cooling (UAD-Wet) and with MQL (UAD-MQL). The drill bit wear, drilling forces, chip morphology and drilled hole quality are used as the performance measures. The results show that UAD conditions result in lower feed forces than CD conditions, with a 31.2% reduction in wet and a 15.3% reduction in MQL on average. The lowest feed forces are observed in UAD-Wet conditions due to better coolant penetration in the cutting zone. The UAD-Wet yielded the lowest tool wear, while CD-MQL exhibited the most severe. UAD demonstrated a & SIM;50% lower tool wear in the wet condition than CD and a 38.7% in the MQL condition. UAD is shown to outperform the CD process in terms of drilled-hole accuracy.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 12
    Modifying Niti Shape Memory Alloys To Reduce Nickel Ions Release Through Ethylenediamine Plasma Polymerization for Biomedical Applications
    (Elsevier Science Sa, 2024) Durukan, Barkan Kagan; Sagdic, Kutay; Kockar, Benat; Inci, Fatih
    Shape memory alloys (SMAs)-a type of smart materials- offer unique benefits for constructing unique medical implants, especially for heart stents, vertebral nails, and braces. One of the widespread SMAs is nitinol (NiTi) which exhibits extraordinary shape memory ability to recover its initial form. However, due to the result of nickel (Ni2+) ions release, long-term usage of NiTi alloys would pose allergic and carcinogenic risks in orthopedics and clinical applications. To tackle these hurdles, we here demonstrate a surface modification technique via plasma polymerization in order to minimize Ni2+ ions release. NiTi substrates were initially exploited by plasma polymerization of ethylenediamine (EDA) with varying power values (25-50-75-100 W) and time rates (5-10-15 min) in order to assess the most efficient parameters for minimal toxic metal release. The samples were then tested for 14 days in a biomimicked media. As a result, 75 W-10 min plasma polymerized sample reduced Ni2+ ions release by 57.18 % compared to the base specimen. These results offer a significant outcome in deploying NiTi alloys into the biomedical field more safely through surface modifications using the plasma polymerization technique.