Search Results

Now showing 1 - 3 of 3
  • Conference Object
    Statistical Randomness Tests of Long Sequences by Dynamic Partitioning
    (Ieee, 2020) Akcengiz, Ziya; Asian, Melis; Karabayir, Ozgur; Doganaksoy, Ali; Uguz, Muhiddin; Sulak, Fatih
    Random numbers have a wide usage in the area of cryptography. In practice, pseudo random number generators are used in place of true random number generators, as regeneration of them may be required. Therefore because of generation methods of pseudo random number sequences, statistical randomness tests have a vital importance. In this paper, a randomness test suite is specified for long binary sequences. In literature, there are many randomness tests and test suites. However, in most of them, to apply randomness test, long sequences are partitioned into a certain fixed length and the collection of short sequences obtained is evaluated instead. In this paper, instead of partitioning a long sequence into lixed length subsequences, a concept of dynamic partitioning is introduced in accordance with the random variable in consideration. Then statistical methods are applied. The suggested suite, containing four statistical tests: Collision Tests, Weight Test, Linear Complexity Test and Index Coincidence Test, all of them work with the idea of dynamic partitioning. Besides the adaptation of this approach to randomness tests, the index coincidence test is another contribution of this work. The distribution function and the application of all tests are given in the paper.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 4
    R-2 Composition Tests: a Family of Statistical Randomness Tests for a Collection of Binary Sequences
    (Springer, 2019) Uguz, Muhiddin; Doganaksoy, Ali; Sulak, Fatih; Kocak, Onur
    In this article a family of statistical randomness tests for binary strings are introduced, based on Golomb's pseudorandomness postulate R-2 on the number of runs. The basic idea is to construct recursive formulae with computationally tenable probability distribution functions. The technique is illustrated on testing strings of 2(7), 2(8), 2(10) and 2(12) bits. Furthermore, the expected value of the number of runs with a specific length is obtained. Finally the tests are applied to several collections of strings arising from different pseudorandom number generators.
  • Article
    RW-9: A Family of Random Walk Tests
    (Springer, 2025) Uguz, Muhiddin; Sulak, Fatih; Doganaksoy, Ali; Kocak, Onur
    In this work, we define a family of nine statistical randomness tests for collections of short binary strings, by making use of random walk statistics. For a binary sequence of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{n}$$\end{document}, we consider the probability of intersecting the line \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y=t}$$\end{document} exactly at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{k}$$\end{document} distinct points. Although there are some explicit formulas for these probability values in the literature, those applicable to short sequences are not feasible for computations involving sequences of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{256}$$\end{document} bits or more. On the other hand, approximation techniques, or asymptotic approaches, that should be used only when testing long sequences, are not useful for testing sequences of length between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{256}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{4096}$$\end{document}. The recursive formulas, derived in this paper, made it possible to obtain exact values of the corresponding probability distribution functions. Using these formulas, we provide the necessary figures for testing collections of strings of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{2}<^>{\varvec{7}}, \ \varvec{2}<^>{\varvec{8}}, \ \varvec{2}<^>{\varvec{10}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{2}<^>{\varvec{12}}$$\end{document} bits. Finally, we apply these nine tests to various collections of strings obtained from different pseudorandom number generators as well as to biased sequences to assess whether the proposed tests can effectively detect non-random data.