RW-9: A Family of Random Walk Tests
Loading...

Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In this work, we define a family of nine statistical randomness tests for collections of short binary strings, by making use of random walk statistics. For a binary sequence of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{n}$$\end{document}, we consider the probability of intersecting the line \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y=t}$$\end{document} exactly at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{k}$$\end{document} distinct points. Although there are some explicit formulas for these probability values in the literature, those applicable to short sequences are not feasible for computations involving sequences of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{256}$$\end{document} bits or more. On the other hand, approximation techniques, or asymptotic approaches, that should be used only when testing long sequences, are not useful for testing sequences of length between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{256}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{4096}$$\end{document}. The recursive formulas, derived in this paper, made it possible to obtain exact values of the corresponding probability distribution functions. Using these formulas, we provide the necessary figures for testing collections of strings of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{2}<^>{\varvec{7}}, \ \varvec{2}<^>{\varvec{8}}, \ \varvec{2}<^>{\varvec{10}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{2}<^>{\varvec{12}}$$\end{document} bits. Finally, we apply these nine tests to various collections of strings obtained from different pseudorandom number generators as well as to biased sequences to assess whether the proposed tests can effectively detect non-random data.
Description
Keywords
Cryptography, Random Walk, Statistical Randomness Testing, NIST Test Suite
Fields of Science
Citation
WoS Q
Q2
Scopus Q
Q3

OpenCitations Citation Count
N/A
Source
Cryptography and Communications-Discrete Boolean Functions and Sequences
Volume
Issue
Start Page
End Page
PlumX Metrics
Citations
Scopus : 0
Google Scholar™


