4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 20Citation - Scopus: 20The Stress Response of Partially Plastic Rotating Fgm Hollow Shafts: Analytical Treatment for Axially Constrained Ends(Taylor & Francis inc, 2006) Eraslan, Ahmet N.; Akis, Tolgaanalytical solutions to estimating the elastoplastic response of rotating functionally graded (FGM) hollow shafts with fixed ends are presented. The modulus of elasticity, as well as the uniaxial yield limit of the shaft material, are assumed to vary nonlinearly in the radial direction. The plastic model is based on Tresca's yield criterion, its associated flow rule, and ideal plastic material behaviour. Elastic, partially plastic, fully plastic, and residual stress states are investigated. It is shown that the elastoplastic stress response of a rotating FGM hollow shaft is affected significantly by the nonhomogeneity of the material. Unlike the case of a homogeneous hollow shaft, plastic deformation may commence at the inner surface, at the outer surface, or simultaneously at both surfaces. Accordingly, each case requires different mathematical treatment to arrive at its partially plastic solution. It is also shown that, by taking a numerical limit, the complete FGM solution presented herein converge to the solution of a homogeneous rotating shaft.Article Citation - WoS: 33Citation - Scopus: 35Exact Solution of Rotating Fgm Shaft Problem in the Elastoplastic State of Stress(Springer, 2007) Akis, Tolga; Eraslan, Ahmet N.Plane strain analytical solutions to estimate purely elastic, partially plastic and fully plastic deformation behavior of rotating functionally graded (FGM) hollow shafts are presented. The modulus of elasticity of the shaft material is assumed to vary nonlinearly in the radial direction. Tresca's yield criterion and its associated flow rule are used to formulate three different plastic regions for an ideal plastic material. By considerina different material compositions as well as a wide range of bore radii, it is demonstrated in this article that both the elastic and the elastoplastic responses of a rotating FGM hollow shaft are affected significantly by the material nonhomogeneity.Article Citation - WoS: 23Citation - Scopus: 30On the Elastic-Plastic Deformation of a Rotating Disk Subjected To a Radial Temperature Gradient(Marcel dekker inc, 2003) Eraslan, AN; Akis, TElastic-plastic stress distribution in a nonisothermal rotating annular disk is analyzed by the use of Tresca and von Mises criteria. An energy equation that accounts for the convective heat transfer with a variable heat transfer coefficient is modeled. For a given angular velocity, the steady temperature distribution in the disk is obtained by the analytical solution of the energy equation. Tresca yield criterion and its associated flow rule are used to obtain the analytical stress distributions for a linearly hardening material. A computational model is developed to analyze elastic-plastic deformations of the disk using von Mises yield criterion and its flow rule. This model incorporates Swift's hardening law to simulate linear as well as nonlinear hardening material behavior. It is shown that the stress distribution in the disk is affected significantly by the presence of the temperature gradient.Article Citation - WoS: 50Citation - Scopus: 55Plane Strain Analytical Solutions for a Functionally Graded Elastic-Plastic Pressurized Tube(Elsevier Sci Ltd, 2006) Eraslan, Ahmet N.; Akis, TolgaPlane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters. (c) 2006 Elsevier Ltd. All rights reserved.

