Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 32
    Citation - Scopus: 32
    Temperature Dependence of the Band Gap, Refractive Index and Single-Oscillator Parameters of Amorphous Indium Selenide Thin Films
    (Elsevier Science Bv, 2007) Qasrawi, A. F.
    InSe thin films are obtained by evaporating InSe crystal onto ultrasonically cleaned glass substrates under pressure of similar to 10(-5) Torr. The structural and compositional analysis revealed that these films are of amorphous nature and are atomically composed of similar to 51% In and similar to 49% Se. The reflectance and transmittance of the films are measured at various temperatures (300-450 K) in the incident photon energy range of 1.1-2.1 eV. The direct allowed transitions band gap - calculated at various temperatures - show a linear dependence on temperature. The absolute zero value band gap and the rate of change of the band gap with temperature are found to be (1.62 +/- 0.01) eV and -(4.27 +/- 0.02) x 10(-4) eV/K, respectively. The room temperature refractive index is estimated from the transmittance spectrum. The later analysis allowed the identification of the static refractive index, static dielectric constant, oscillator strength and oscillator energy. (c) 2006 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Acoustic Phonons Scattering Mobility and Carrier Effective Mass in In6s7< Crystals
    (Elsevier Science Sa, 2006) Qasrawi, A. F.; Gasanly, N. M.
    Systematic dark electrical resistivity and Hall coefficient measurements have been carried out in the temperature range of 170-320 K on n-type In6S7 crystals. The analysis of the electrical resistivity and carrier concentration reveals the intrinsic type of conduction with an average energy band gap of similar to 0.75 eV The carrier effective masses of the conduction and valence bands were calculated from the intrinsic temperature-dependent carrier concentration data and were found to be 0.565m(0) and 2.020m(0), respectively. The temperature-dependent Hall mobility was observed to follow the mu alpha T-3/2 law and was analyzed assuming the domination of acoustic phonons scattering. The acoustic phonons scattering mobility was calculated from the crystal's structural data with no assumptions. The experimental Hall mobility data of In6S7 crystals coincides with the theoretical acoustic phonons scattering mobility data with acoustic deformation potential of 6.4 eV. (c) 2006 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 28
    Citation - Scopus: 29
    Annealing Effects on the Structural and Optical Properties of Agin5s8< Thin Films
    (Elsevier Science Sa, 2008) Qasrawi, A. F.; Qasrawı, Atef Fayez Hasan; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    Due to its importance as a perspective material for application in optoelectronic semiconductor devices, the thermal annealing effects on the structural and optical properties of the as-grown vacuum evaporated AgIn5S8 thin films have been investigated. The X-ray data analysis have shown that these films are polycrystalline in nature and exhibit better crystallization with increasing crystallite size and slightly, decreasing unit cell lattice parameter as annealing temperature is raised from 450 to 600 K. The optical energy band gap for the as-grown and thermally annealed films is found to be of direct allowed transitions type. The energy band gap exhibited values of 1.78, 1.74 and 1.62 eV as the samples were annealed at, 450 and 600 K, respectively. This indicates the ability of altering the band gap values of this material by the thermal annealing process. The structural and optical features seem to be suitable for semiconductor device production such as solar cell converters, which has successfully been fabricated by others, metal-insulator-semiconductor (MIS) and metal - oxide - semiconductor (MOS) devices, as well. (c) 2007 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 8
    Optical Properties of Tl2ingas4< Layered Single Crystal
    (Elsevier Science Bv, 2007) Qasrawi, A. F.; Gasanly, N. M.
    The temperature dependence of the optical band gap of Tl2InGaS4 single crystal in the temperature region of 300-500 K and the room temperature refractive index, n(lambda), have been investigated. The absorption coefficient, which was calculated from the transmittance and reflectance spectra in the incident photon energy range of 2.28-2.48 eV, increased with increasing temperature. Consistently, the absorption edge shifts to lower energy values as temperature increases. The fundamental absorption edge corresponds to an indirect allowed transitions energy gap (2.35 eV) that exhibits a temperature coefficient of -4.03 x 10(-4) eV/K. The room temperature n(lambda), calculated from the reflectance and transmittance data, allowed the identification of the oscillator strength and energy, static and lattice dielectric constants, and static refractive index as 16.78 eV and 3.38 eV, 5.96 and 11.77, and 2.43, respectively. (c) 2006 Elsevier B.V. All rights reserved.