Search Results

Now showing 1 - 7 of 7
  • Article
    Citation - WoS: 77
    Citation - Scopus: 101
    An Intelligent Process Planning System for Prismatic Parts Using Step Features
    (Springer London Ltd, 2007) Amaitik, Saleh M.; Kilic, S. Engin
    This paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corresponding STEP-NC in XML format. It carries out several stages of process planning such as operations selection, tool selection, machining parameters determination, machine tools selection and setup planning. A hybrid approach of most recent techniques ( neural networks, fuzzy logic and rule-based) of artificial intelligence is used as the inference engine of the developed system. An object-oriented approach is used in the definition and implementation of the system. An example part is tested and the corresponding process plan is presented to demonstrate and verify the proposed CAPP system. The paper thus suggests a new feature-based intelligent CAPP system for avoiding complex feature recognition and knowledge acquisition problems.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 14
    A Neural Network Model for the Assessment of Partners' Performance in Virtual Enterprises
    (Springer London Ltd, 2007) Sari, Burak; Amaitik, Saleh; Kilic, S. Engin
    In response to increasing international competition, enterprises have been investigating new ways of cooperating with each other to cope with today's unpredictable market behaviour. Advanced developments in information & communication technology (ICT) enabled reliable and fast cooperation to support real-time alliances. In this context, the virtual enterprise (VE) represents an appropriate cooperation alternative and competitive advantage for the enterprises. VE is a temporary network of independent companies or enterprises that can quickly bring together a set of core competencies to take advantage of market opportunity. In this emerging business model of VE, the key to enhancing the quality of decision making in the partner companies' performance evaluation function is to take advantage of the powerful computer-related concepts, tools and technique that have become available in the last few years. This paper attempts to introduce a neural network model, which is able to contribute to the extrapolation of the probable outcomes based on available pattern of events in a virtual enterprise. Quality, delivery and progress were selected as determinant factors effecting the performance assessment. Considering the features of partner performance assessment and neural network models, a back-propagation neural network that includes a two hidden layers was used to evaluate the partner performance.
  • Article
    Citation - WoS: 33
    Citation - Scopus: 56
    Smart irrigation system for environmental sustainability in Africa: An Internet of Everything (IoE) approach
    (Amer inst Mathematical Sciences-aims, 2019) Adenugba, Favour; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, Robertas; Kazanavicius, Egidijus
    Water and food are two of the most important commodities in the world, which makes agriculture crucial to mankind as it utilizes water (irrigation) to provide us with food. Climate change and a rapid increase in population have put a lot of pressure on agriculture which has a snowball effect on the earth's water resource, which has been proven to be crucial for sustainable development. The need to do away with fossil fuel in powering irrigation systems cannot be over emphasized due to climate change. Smart Irrigation systems powered by renewable energy sources (RES) have been proven to substantially improve crop yield and the profitability of agriculture. Here we show how the control and monitoring of a solar powered smart irrigation system can be achieved using sensors and environmental data from an Internet of Everything (IoE). The collected data is used to predict environment conditions using the Radial Basis Function Network (RBFN). The predicted values of water level, weather forecast, humidity, temperature and irrigation data are used to control the irrigation system. A web platform was developed for monitoring and controlling the system remotely.
  • Article
    Citation - WoS: 17
    Citation - Scopus: 23
    Regarding Solid Oxide Fuel Cells Simulation Through Artificial Intelligence: a Neural Networks Application
    (Mdpi, 2019) Baldinelli, Arianna; Barelli, Linda; Bidini, Gianni; Bonucci, Fabio; Iskenderoglu, Feride Cansu
    Because of their fuel flexibility, Solid Oxide Fuel Cells (SOFCs) are promising candidates to coach the energy transition. Yet, SOFC performance are markedly affected by fuel composition and operative parameters. In order to optimize SOFC operation and to provide a prompt regulation, reliable performance simulation tools are required. Given the high variability ascribed to the fuel in the wide range of SOFC applications and the high non-linearity of electrochemical systems, the implementation of artificial intelligence techniques, like Artificial Neural Networks (ANNs), is sound. In this paper, several network architectures based on a feedforward-backpropagation algorithm are proposed and trained on experimental data-set issued from tests on commercial NiYSZ/8YSZ/LSCF anode supported planar button cells. The best simulator obtained is a 3-hidden layer ANN (25/22/18 neurons per layer, hyperbolic tangent sigmoid as transfer function, obtained with a gradient descent with adaptive learning rate backpropagation). This shows high accuracy (RMS = 0.67% in the testing phase) and successful application in the forecast of SOFC polarization behaviour in two additional experiments (RMS in the order of 3% is scored, yet it is reduced to about 2% if only the typical operating current density range of real application is considered, from 300 to 500 mA.cm(-2)). Therefore, the neural tool is suitable for system simulation codes/software whether SOFC operating parameters agree with the input ranges (anode feeding composition 0-48%(vol) H-2, 0-38%(vol) CO, 0-45%(vol) CH4, 9-32%(vol) CO2, 0-54%(vol) N-2, specific equivalent hydrogen flow-rate per unit cell active area 10.8-23.6 mL.min(-1).cm(-2), current density 0-1300 mA.cm(-2) and temperature 700-800 degrees C).
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Discrete Time Neuro Sliding Mode Control With a Task-Specific Output Error
    (Springer, 2004) Efe, MO; Department of Electrical & Electronics Engineering
    The problem of obtaining the error at the output of a neuro sliding mode controller is analyzed in this paper. The controller operates in discrete time and the method presented describes an error measure that can be used if the task to be achieved is to drive the system under control to a predefined sliding regime. Once the task-specific output error is calculated, the neurocontroller parameters can be tuned so that the task is achieved. The paper postulates the strategy for discrete time representation of uncertain nonlinear systems belonging to a particular class. The performance of the proposed technique has been clarified on a third order nonlinear system, and the parameters of the controller are adjusted by using the error backpropagation algorithm. It is observed that the prescribed behavior can be achieved with a simple network configuration.
  • Article
    Citation - WoS: 44
    Citation - Scopus: 49
    A Neural Network-Based Approach for Calculating Dissolved Oxygen Profiles in Reservoirs
    (Springer London Ltd, 2003) Soyupak, S; Karaer, F; Gürbüz, H; Kivrak, E; Sentürk, E; Yazici, A
    A Neural Network (NN) modelling approach has been shown to be successful in calculating pseudo steady state time and space dependent Dissolved Oxygen (DO) concentrations in three separate reservoirs with different characteristics using limited number of input variables. The Levenberg-Marquardt algorithm was adopted during training. Pre-processing before training and post processing after simulation steps were the treatments applied to raw data and predictions respectively. Generalisation was improved and over-fitting problems were eliminated: Early stopping method was applied for improving generalisation. The correlation coefficients between neural network estimates and field measurements were as high as 0.98 for two of the reservoirs with experiments that involve double layer neural network structure with 30 neurons within each hidden layer. A simple one layer neural network structure with 11 neurons has yielded comparable and satisfactorily high correlation coefficients for complete data set, and training, validation and test sets of the third reservoir.
  • Article
    Citation - WoS: 42
    Citation - Scopus: 47
    A Novel Global Robust Stability Criterion for Neural Networks With Delay
    (Elsevier Science Bv, 2005) Singh, V
    A criterion based on the intervalised network parameters for the global robust stability of Hopfield-type neural networks with delay is presented. The criterion is compared with an earlier criterion. (c) 2005 Elsevier B.V. All rights reserved.