Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 29
    Citation - Scopus: 37
    A Guide for Validation of Fe-Simulations in Bulk Metal Forming
    (Springer Heidelberg, 2005) Tekkaya, AE; Manufacturing Engineering
    Numerical analysis of metal forming processes is an everyday practice in industry. Forming loads, material flow, forming defects such as underfills, laps, and even cracks, stresses in dies and punches, as well as product properties like new hardness distribution, dimensional accuracies, and residual stresses are predicted by numerical analysis and used for technology generation. Most of the numerical analysis is done by the finite element method made available for engineers and technicians by numerous powerful commercial software packages. These software packages act as black-boxes and usually hide the complicated numerical procedures and even their crucial parameters from the applier. Therefore, the question arises during industrial applications: how accurate is the simulation, and how can the results be assessed? The aim of this paper is to provide a guideline to assess the results of metal forming simulations. Although some ideas are valid for any metal forming process, bulk forming is the primary concern. The paper will address firstly the possible sources of error in a finite element analysis of bulk forming processes. Then, some useful elementary knowledge will be summarized. Various levels of validation such as result and ability validation and assessment will be discussed. Finally, interpretation of results will be treated. In this content also some suggestions will be given.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 15
    Free forming of locally heated specimens
    (Elsevier Sci Ltd, 2007) Okman, O.; Ozmen, M.; Huwiler, H.; Tekkaya, A. E.
    A novel manufacturing method is investigated, in which a steep temperature gradient within the workpiece is induced to facilitate material flow locally. By this method, complex shapes can be formed without complicated dies. The feasibility of the idea is analyzed experimentally and numerically. Local heating is realized either by means of induction or laser heating. Experiments using materials 16MnCr5, X5CrNi18/9, and Ti6Al4V have been conducted under various process conditions. These experiments have also been modeled by finite element method (FEM) validating the analysis procedure. Electromagnetic models are used to analyze the heat generation pattern on the workpiece by induction. It is found that the most important process parameters are the thermal diffusivity and the temperature sensitivity of the flow curve of the workpiece material. The lower the thermal diffusivity and the higher the temperature sensitivity, the more differentiated local shapes can be formed. For the analyzed geometries, induction heating has been observed to be more effective. Deformation rate and initial workpiece geometry have also a significant effect on the achievable local deformations. Various failure modes such as unintended deformations, damage by fracture, and melting of the workpiece material are described. It is concluded that the new idea of forming local shapes by local heating is a feasible and controllable manufacturing alternative. (c) 2006 Elsevier Ltd. All rights reserved.
  • Article
    Citation - Scopus: 1
    Assessment and Improvement of Elementary Force Computations for Cold Forward Rod Extrusion
    (Springer Heidelberg, 2005) Öcal, M; Egemen, N; Tekkaya, AE; Manufacturing Engineering
    Two commonly used analytical force computation methods for cold forward rod extrusion are evaluated by means of precise finite element computations. The upperbound model by Avitzur based on the spherical velocity field and the model by Siebel based on a quasi-upper-bound solution are considered. It has been found that the pure deformation forces obtained by summing the ideal force and shear force terms deviate between +25% and -20% from the finite element solutions. Larger deviations, however, occur for the Coulomb-friction term in the container. A new model based on an elasto-static analysis combined with numerical analysis is suggested to compute this term. This new model supplies also the accurate pressure distribution within the container.