4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 8Citation - Scopus: 9First-principles studies of Tin+1SiNn (n=1, 2, 3) MAX phase(Taylor & Francis Ltd, 2020) Surucu, Gokhan; Gullu, Hasan Huseyin; Candan, Abdullah; Yildiz, Bugra; Erkisi, AytacIn this study, the structural, electronic, mechanical, lattice dynamical and thermodynamic characteristics of ( 1, 2 and 3) phase compounds were investigated using the first principle calculations. These ternary nitride compounds were found to be stable and synthesisable, and the results on the stability nature of them were also evaluated for the possible and phases. -was found to be the most stable one among these new class of layered phases for which limited works are available in the literature. The band structures, that are essential for the electronic properties, were determined along with the partial density of states (PDOS) indicating the metallic behaviour of these compounds. The polycrystalline elastic moduli were calculated based on the single-crystal elastic constants and the mechanical stabilities were verified. Some basic physical parameters, such as bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Debye temperature, and sound velocities, were also predicted. Furthermore, the anisotropic elastic properties were visualised in three dimensions (3D) for Young's modulus, linear compressibility, shear modulus and Poisson's ratio as well as with the calculation of the anisotropic factors. - phase showed the most isotropic characteristics with minimum deviations. These theoretical values were also used to identify the stiffness and ionic characteristics. The phonon dispersion curves and corresponding PDOS indicated that compounds were dynamically stable. Moreover, thermodynamic properties obtained from phonon dispersion curves were investigated in detail.Article Citation - Scopus: 5Evaluation of Mechanical Properties of Bi12sio20 Sillenite Using First Principles and Nanoindentation(Taylor and Francis Ltd., 2021) Isik,M.; Surucu,G.; Gencer,A.; Gasanly,N.M.The mechanical and anisotropic elastic properties of Bi12SiO20 (BSO) were investigated using density functional theory (DFT) calculations and nanoindentation. The calculated and experimentally observed XRD patterns of the compound were reported and the crystal structure of the BSO was determined to be cubic with the lattice constant of a = 1.025 nm. The second-order elastic constants and related polycrystalline elastic moduli (e.g. shear modulus, Young’s modulus, Poisson’s ratio, linear compressibility and hardness) were calculated. The calculated elastic constants indicated that BSO is mechanically stable and exhibits anisotropic characteristics. Moreover, the directional dependencies of sound wave velocities were investigated in three dimensions. Pressure-dependent bulk modulus was plotted at temperatures between 0 and 800 K. Hardness and Young’s modulus were also determined by performing nanoindentation experiments on (222) and (631) planes of the BSO single crystal. The analyses of the experimental nanoindentation data resulted in hardness and Young’s modulus values of 7.2 and 97.0 GPa, respectively. The results of DFT and nanoindentation were discussed throughout the paper. The results of the present paper would provide valuable information on the mechanical behaviours of the BSO for the optoelectronic device applications. © 2021 Informa UK Limited, trading as Taylor & Francis Group.Article Citation - WoS: 9Citation - Scopus: 10Synthesis and Characterization of Novel High Temperature Structural Adhesives Based on Nadic End Capped Mda-Btda Copolyimide(Iop Publishing Ltd, 2018) Acar, Oktay; Varis, Serhat; Isik, Tugba; Tirkes, Seha; Demir, Mustafa M.A series of novel copolyimide structural adhesives were synthesized using 4,4'-diaminodiphenyl-methane (MDA), 3,4'-oxydianiline (ODA) and 3,3',4,4'-benzophenonetetracarboxylic acid dianhy-dride (BTDA) as co-monomers, and nadic anhydride as an end cap reagent. The adhesives with different MDA and ODA contents were examined in terms of their structure, thermal stability, mechanical properties, and adhesive performance. They have glass transition temperatures (T-g) about 400 degrees C, with thermal stability up to 500 degrees C. The effect of diamine monomer compositions on adhesion performance and processability of the copolyimides were studied. The copolyimides exhibited adhesion strength up to 16.3 MPa at room temperature. Nadic end capped MDA-BTDA-ODA copolyimide resins gained adjustable and controllable processability with the addition of ether bridged aromatic segments. The copolyimide adhesive with equimolar composition of MDA: ODA is distinguished form the both commercial PMR-15 and LARC RP-46 polyimides in terms of its better processability and mechanical performance.Article Citation - WoS: 31Citation - Scopus: 34Mechanical, Thermo-Mechanical and Morphological Characterization of Abs Based Composites Loaded With Perlite Mineral(Iop Publishing Ltd, 2020) Alghadi, Aiah Mohamed; Tirkes, Seha; Tayfun, UmitAcrylonitrile-butadiene-styrene (ABS) copolymer was filled with perlite mineral (PER) at four different loading level of 2.5%, 5%, 10% and 15%. ABS/PER composites were produced using lab-scale micro-compounder followed by injection molding process. Mechanical, thermo-mechanical, melt-flow and morphological properties of composites were reported by tensile and impact tests, dynamic mechanical analysis (DMA), melt flow index (MFI) test and scanning electron microscopy (SEM), respectively. Mechanical characterizations revealed that tensile strength, elongation and Youngs? modulus of ABS were improved by PER inclusions. However, impact strength of ABS reduced with increase of PER concentration. Glass transition temperature of ABS displayed increasing trend for %5 concentration of PER. MFI test implied that PER addition caused slight decreasing for MFI value of unfilled ABS. Homogeneous dispersion of PER particles into ABS matrix for their lower loading level was obtained from SEM micrographs of composites. According to findings, 5% PER containing sample exhibited the best performance and it was remarked as the most suitable candidate among fabricated ABS based composites.

