3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - Scopus: 5Influence of Water/O2 Plasma Treatment on Cellular Responses of Pcl and Pet Surfaces(IOS Press, 2011) Türkoǧlu Şaşmazel,H.; Aday,S.; Manolache,S.; Gumusderelioglu,M.In this study, low pressure water/O2 plasma treatment was performed in order to obtain COOH functionalities on the surface of poly-ε-caprolactone (PCL) membranes as well as non-woven polyester fabric (NWPF) discs. The plasma treatments were performed in a cylindrical, capacitively coupled RF-plasma-reactor and then following steps were performed: in situ (oxalyl chloride vapors) gas/solid reaction to convert -OH functionalities into -COCl groups; and hydrolysis under open laboratory conditions using air moisture for final-COOH functionalities. COOH and OH functionalities on modified surfaces were detected quantitatively by using fluorescent labeling technique and an UVX 300G sensor. Electron spectroscopy for chemical analysis (ESCA) was used to evaluate the relative surface atomic compositions and the carbon and oxygen linkages located in non-equivalent atomic positions of untreated and modified surfaces. Atomic force microscope (AFM) analysis showed that nanoscale features of the PCL surfaces are dramatically changed during the surface treatments. Scanning electron microscopy (SEM) results indicated the changes in the relatively smooth appearance of the untreated NWPF discs after the plasma treatment. Periodontal ligament (PDL) fibroblasts were used in cell culture studies. Cell culture results showed that plasma treated PCL membranes and NWPF discs were favorable for the PDL cell spreading, growth and viability due to the presence of functional groups and/or nanotopographies on their surfaces. © 2011 - IOS Press and the authors. All rights reserved.Conference Object Citation - WoS: 1Effects of Functional Groups, Biosignal Molecules and Nanotopography on Cellular Proliferation(Springer, 2009) Sasmazel, H. T.; Manolache, S.; Guemuesderelioglu, M.The aim Of this Study is the development of novel cell Support materials for fibroblast cell cultivation by using low-pressure plasma assisted treatment. Poly(epsilon-caprolactone) (PCL) membranes were prepared by solvent-casting technique. The plasma assisted treatment was focused oil generating a nano-topography and obtaining COOH functionalities oil the Surface of the membranes. The immobilization of biomolecules onto the PCL membranes was realized after the plasma treatment, The membranes prepared were characterized by various methods before and after the biomodification. L929 mouse fibroblasts were used for cell Culture evaluation. The prominent roles Of Surface nano-topography and carboxylic groups generated by the plasma in obtaining better cell growth on PCL Surfaces are highlighted in this study.Article Citation - WoS: 17Citation - Scopus: 19Water/O2< Treatment of Pcl Membranes for Biosignal Immobilization(Vsp Bv, 2009) Sasmazel, Hilal Tuerkoglu; Manolache, Sorin; Guemuesderelioglu, MenemseThe main purpose of this study was to obtain COOH functionalities on the surface of poly-epsilon-caprolactone (PCL) membranes using low-pressure water/O-2-plasma-assisted treatment. PCL membranes were prepared using the solvent-casting technique. Then, low-pressure water/O-2 plasma treatments were performed in a cylindrical, capacitively coupled RF-plasma-reactor in three steps: H2O/O-2-plasma treatment; in situ (oxalyl chloride vapors) gas/solid reaction to convert -OH functionalities into -COCl groups; and hydrolysis for final -COOH functionalities. Optimization of plasma modification processes was done using the DoE software program. COOH and OH functionalities on modified surfaces were detected quantitatively using the fluorescent labeling technique and an UVX 300G sensor. Chemical structural information of untreated, plasma treated and oxalyl chloride functionalized PCL membranes were acquired using pyrolysis GC/MS and ESCA analysis. High-resolution AFM images revealed that nanopatterns were more affected than micropatterns by plasma treatments. AFM images recorded with amino-functionalized tips presented increased size of the features on the surface that suggests higher density of the carboxyls on the nanotopographical elements. Low-pressure water/O-2-plasma-treated and oxalyl chloride functionalized samples were biologically activated with insulin and/or heparin biosignal molecules using a PEO (polyoxyethylene bis amine) spacer. The success of the immobilization process was checked qualitatively by ESCA analysis. In addition, fluorescent labeling techniques were used for the quantitative determination of immobilized biomolecules. Cell-culture experiments indicated that biomolecule immobilization onto PCL scaffolds was effective on L929 cell adhesion and proliferation, especially in the presence of heparin. (C) Koninklijke Brill NV, Leiden, 2009

