Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 1
    Citation - Scopus: 2
    Functions Whose Smoothness Is Not Improved Under the Limit q-bernstein Operator
    (Springer, 2012) Ostrovska, Sofiya
    The limit q-Bernstein operator B-q emerges naturally as a modification of the Szasz-Mirakyan operator related to the Euler probability distribution. At the same time, this operator serves as the limit for a sequence of the q-Bernstein polynomials with 0 < q < 1. Over the past years, the limit q-Bernstein operator has been studied widely from different perspectives. Its approximation, spectral, and functional-analytic properties, probabilistic interpretation, the behavior of iterates, and the impact on the analytic characteristics of functions have been examined. It has been proved that under a certain regularity condition, B-q improves the smoothness of a function which does not satisfy the Holder condition. The purpose of this paper is to exhibit 'exceptional' functions whose smoothness is not improved under the limit q-Bernstein operator. MSC: 26A15; 26A16; 41A36
  • Article
    Qualitative results on the convergence of the q-Bernstein polynomials
    (North Univ Baia Mare, 2015) Ostrovska, Sofiya; Turan, Mehmet
    Despite many common features, the convergence properties of the Bernstein and the q-Bernstein polynomials are not alike. What is more, the cases 0 < q < 1 and q > 1 are not similar to each other in terms of convergence. In this work, new results demonstrating the striking differences which may occur in those convergence properties are presented.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 10
    On the Image of the Limit q-bernstein Operator
    (Wiley, 2009) Ostrovska, Sofiya
    The limit q-Bernstein operator B-q emerges naturally as an analogue to the Szasz-Mirakyan operator related to the Euler distribution. Alternatively, B-q comes out as a limit for a sequence of q-Bernstein polynomials in the case 0