3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 11Citation - Scopus: 15Biomechanical Comparison of Sinus Floor Elevation and Alternative Treatment Methods for Dental Implant Placement(Taylor & Francis Ltd, 2017) Kucukkurt, Sercan; Alpaslan, Goekhan; Kurt, AhmetObjective: In this study, we compared the success of sinus lifting and alternative treatment methods in applying dental implants in cases lacking adequate bone due to pneumatization of the maxillary sinus. Methods: In a computer environment, 3D models were created using computerized tomography data from a patient. Additionally, implants and abutments were scanned at the macroscopic level, and the resulting images were transferred to the 3D models. Five different models were examined: a control model, lateral sinus lifting (LSL), short dental implant placement (SIP), tilted implant placement (TIP) and distal prosthetic cantilever (DC) use. Vertical and oblique forces were applied in each model. The compression, tension and von Mises stresses in each model were analyzed by implementing a finite element analysis method. Results: In our study, the LSL method was observed to be the closest to the control model. The TIP model showed high stress values under conditions of oblique forces but showed successful results under conditions of vertical forces, and the opposite results were observed in the SIP model. The DC model provided the least successful results among all models. Conclusions: Based on the results of this study, the LSL method should be the first choice among treatment options. Considering its successful results under conditions of oblique forces, the SIP method may be preferable to the TIP method. In contrast, every effort should be made to avoid the use of DCs.Article Citation - WoS: 2Citation - Scopus: 2Finite Element Analysis of Stress Distribution on Modified Retentive Tips of Bar Clasp(Taylor & Francis Ltd, 2012) Oyar, P.; Soyarslan, C.; Can, G.; Demirci, E.This study used finite element analysis to evaluate the retentive tips of bar clasps made from different alloys and using different designs in order to determine whether or not different materials and tip forms are suitable for bar clasp applications. Co-Cr, Ti and Type IV Au alloys were selected based on their physical and mechanical properties. The 3D finite element models of three different bar clasp retentive tip geometries prepared from Co-Cr, Ti and Type IV Au alloys were constructed using the finite element software package MSC. Marc. Analysis of a concentrated load of 5N applied to the removable partial denture approach arms in an occlusal direction was performed. Although stress distribution and localisation within bar clasps with different retentive tips were observed to be similar and were concentrated in the approach arm, stress intensities differed in all models.Article Citation - WoS: 1Citation - Scopus: 2Evaluation of Biomechanical Effects of Different Implant Thread Designs and Diameters on All-On Concept(Ariesdue Srl, 2021) Zor, Z. F.; Kilinc, Y.; Erkmen, E.; Kurt, A.Aim All-on-four concept involves the use of four anterior dental implants in the edentulous jaw to overcome anatomic limitations of residual alveolar bone. The impact of implant thread design and diameter on the biomechanical performance of all-on-four concept is not yet fully understood. The purpose of this study was to investigate the biomechanical behavior of all-on-four concept with different combinations of thread designs and diameters through a three dimensional Finite Element Analysis. Materials and methods Six three-dimensional finite element models of edentulous mandible were developed. The models included the combinations of 3.5 and 4.3 mm diameter implants with active and passive thread designs. Vertical, oblique and horizontal loads were applied anterior to the end of the cantilever. Von Mises, maximum principal and minimum principal stresses were analysed. Results The results indicated a tendency towards stress reduction in Von Mises stress values of dental implants with the increase in diameter for both mesial and distal implants. In narrow implants active thread design resulted in lower Von Mises stress values than passive thread design. Active thread design demonstrated higher bone stress when compared to passive thread design. The analysis also revealed the importance of mesial implant for diminishing stresses on the distal implant and their surrounding bone under horizontal and oblique loading. Conclusion The comparison of the models suggest that use of wide implant is advantageous in the all-on-four concept. There is a biomechanical advantage in using narrow implants with active thread design in horizontally inadequate bone. The thread design was more significant in terms of increasing bone stress than implant diameter. The mesial implant influences the biomechanical behavior of the whole design, contributing to a more favorable stress distribution under horizontal and oblique loading conditions.

