3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 9Citation - Scopus: 9Proton Therapy for Mandibula Plate Phantom(Mdpi, 2021) Senirkentli, Guler Burcu; Ekinci, Fatih; Bostanci, Erkan; Guzel, Mehmet Serdar; Dagli, Ozlem; Karim, Ahmad M.; Mishra, AlokPurpose: In this study, the required dose rates for optimal treatment of tumoral tissues when using proton therapy in the treatment of defective tumours seen in mandibles has been calculated. We aimed to protect the surrounding soft and hard tissues from unnecessary radiation as well as to prevent complications of radiation. Bragg curves of therapeutic energized protons for two different mandible (molar and premolar) plate phantoms were computed and compared with similar calculations in the literature. The results were found to be within acceptable deviation values. Methods: In this study, mandibular tooth plate phantoms were modelled for the molar and premolar areas and then a Monte Carlo simulation was used to calculate the Bragg curve, lateral straggle/range and recoil values of protons remaining in the therapeutic energy ranges. The mass and atomic densities of all the jawbone layers were selected and the effect of layer type and thickness on the Bragg curve, lateral straggle/range and the recoil were investigated. As protons move through different layers of density, lateral straggle and increases in the range were observed. A range of energies was used for the treatment of tumours at different depths in the mandible phantom. Results: Simulations revealed that as the cortical bone thickness increased, Bragg peak position decreased between 0.47-3.3%. An increase in the number of layers results in a decrease in the Bragg peak position. Finally, as the proton energy increased, the amplitude of the second peak and its effect on Bragg peak position decreased. Conclusion: These findings should guide the selection of appropriate energy levels in the treatment of tumour structures without damaging surrounding tissues.Article Citation - WoS: 13Citation - Scopus: 13In Vitro and in Vivo Bacterial Antifouling Properties of Phosphite of Plasma-Treated Silicone(Ice Publishing, 2019) Akdogan, Ebru; Demirbilek, Murat; Sen, Yasin; Onur, Mehmet Ali; Azap, Ozlem Kurt; Sonmez, Erkin; Mutlu, MehmetIn order to improve their bacterial antifouling property, silicone surfaces were functionalized through the plasma polymerization (PP) technique using diethyl phosphite as the precursor. The functionalized surfaces were characterized using contact angle measurements, contact angle titration, Fourier transform infrared-attenuated total reflection spectroscopy and in vitro cytotoxicity assay. The amount of non-specific protein adsorption and the conformational changes of surface-adsorbed proteins were investigated. Antifouling properties of the surfaces were evaluated in vitro and in vivo. PP functionalization generated a hydrophilic and amphoteric surface with a very good protein and bacterial antifouling property and caused less conformational changes on the secondary structure of surface-adsorbed proteins. In in vivo conditions, no slime layer was formed around bacteria that adhered on the PPfunctionalized surface. It is concluded that the amphoteric nature of the PP-functionalized surface is the reason for the good antifouling property.Review Citation - WoS: 13Citation - Scopus: 14Molecularly Imprinted Polymer-Based Sensors for the Detection of Skeletal- and Cardiac-Muscle Analytes(Mdpi, 2023) Ostrovidov, Serge; Ramalingam, Murugan; Bae, Hojae; Orive, Gorka; Fujie, Toshinori; Hori, Takeshi; Kaji, HirokazuMolecularly imprinted polymers (MIPs) are synthetic polymers with specific binding sites that present high affinity and spatial and chemical complementarities to a targeted analyte. They mimic the molecular recognition seen naturally in the antibody/antigen complementarity. Because of their specificity, MIPs can be included in sensors as a recognition element coupled to a transducer part that converts the interaction of MIP/analyte into a quantifiable signal. Such sensors have important applications in the biomedical field in diagnosis and drug discovery, and are a necessary complement of tissue engineering for analyzing the functionalities of the engineered tissues. Therefore, in this review, we provide an overview of MIP sensors that have been used for the detection of skeletal- and cardiac-muscle-related analytes. We organized this review by targeted analytes in alphabetical order. Thus, after an introduction to the fabrication of MIPs, we highlight different types of MIP sensors with an emphasis on recent works and show their great diversity, their fabrication, their linear range for a given analyte, their limit of detection (LOD), specificity, and reproducibility. We conclude the review with future developments and perspectives.

