Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 8
    Effect of Austenitizing Temperatures on the Microstructure and Mechanical Properties of Aisi 9254 Steel
    (Walter de Gruyter Gmbh, 2021) Murathan, Omer Faruk; Davut, Kemal; Kilicli, Volkan
    In this study, the effect of austenitizing temperatures and low-temperature isothermal heat treatment (below martensite start temperature) on the microstructure and mechanical properties of AISI 9254 high silicon spring steel has been investigated. Experimental studies show that ultra-fine carbide-free bainite, tempered martensite and carbon enriched retained austenite could be observed in isothermally heat-treated samples where the as-received sample consisted of fine pearlite. A high tensile strength of similar to 2060 MPa, a total elongation of similar to 8 %, and absorbed energy of 105 J were achieved in a commercial high-Si steel by austempering below the Ms temperature. A good combination of strength and ductility has been obtained in prolonged austempering below the martensite start temperature (225 degrees C) from an austenitizing temperature of 870 degrees C.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 20
    A Comparison of the Ballistic Performances of Various Microstructures in Mil-A Armor Steel
    (Mdpi, 2020) Konca, Erkan
    Due to their advantageous properties, there is a growing interest in developing armor steels containing fully or partially bainitic microstructures. In this study, bainitic and martensitic microstructures were obtained in rolled homogeneous armor (RHA) steel samples and their ballistic protection performances were investigated. RHA (MIL-A-12560) steel samples were subjected to isothermal heat treatments at three different temperatures, where one temperature (360 degrees C) was above the martensite formation start (Ms) temperature of 336 degrees C while the other two (320 degrees C and 270 degrees C) were below. For the assessment of the ballistic protection performance, the kinetic energy losses of the 12.7 mm bullets fired at the test samples were determined. The promising nature of the bainite microstructure was confirmed as the sample isothermally treated at 360 degrees C provided approximately 10% higher ballistic protection as compared to the regular RHA sample of tempered martensite microstructure. However, the ballistic performances of the isothermally treated samples decreased as the treatment temperature went below the Ms temperature. Following the ballistic tests, hardness measurements, impact tests at -40 degrees C, and macro- and microstructural examinations of the samples were performed. No correlation was found between the hardness and impact energies of the samples and their ballistic performances.