Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 11
    Citation - Scopus: 14
    Tribological Behavior of Alumina-Added Apatite-Wollastonite Glass-Ceramics in Simulated Body Fluid
    (Elsevier Science Sa, 2010) Park, Jongee; You, Sang-Hee; Shin, Dong-Woo; Ozturk, Abdullah
    Tribological properties of an alumina-added apatite-wollastonite glass-ceramic produced by controlled heat treatment of a glass in the system MgO-CaO-SiO(2)-P(2)O(5)-Al(2)O(3) have been evaluated and compared with those of selected commercial dental ceramics, Duceragold and IPS Empress. Tribological tests were performed in dry condition and in simulated body fluid (SBF) using a pin-on-disk apparatus. The friction coefficient and specific wear rate of the tested materials were measured in dry and in artificial saliva (simulated body fluid: SBF) in order to elucidate the appropriateness of the alumina-added apatite-wollastonite (A-W) glass-ceramic for dental applications. Wear rate of the materials investigated varied from 0.96 x 10(-4) mm(3) N(-1) m to 41.37 x 10(-4) mm(3) N(-1) m depending on the bioenvironmental test conditions. The results of this study revealed that the alumina-added A-W glass-ceramic becomes more wear resistant as sintering temperature is increased and exhibits tribological properties similar to those of the commercial dental materials investigated. (C) 2010 Elsevier B.V. All rights reserved.
  • Conference Object
    Citation - WoS: 19
    Citation - Scopus: 24
    An Experimental Study on Surface Quality of Al6061-T6 in Ultrasonic Vibration-Assisted Milling with Minimum Quantity Lubrication
    (Elsevier Science BV, 2022) Namlu, Ramazan Hakki; Yilmaz, Okan Deniz; Lotfisadigh, Bahram; Kilic, S. Engin
    Al6061-T6 is frequently used in the automotive and aerospace industries, where milling is an essential process, due to its high strength-to-weight ratio. In order to achieve improved surface quality in milling, Ultrasonic Vibration-Assisted Milling (UVAM) has been introduced recently. Besides, Minimum Quantity Lubrication (MQL) is another advanced method to enhance the surface properties of the cutting by improving the coolant performance. However, the effects of simultaneous implementation of UVAM and MQL methods has not yet been studied sufficiently. This paper investigates the effects of applying UVAM in tandem with MQL in cutting of Al6061-T6. The results showed that surface quality enhanced with this combination. (c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
  • Article
    Citation - WoS: 2
    Performance of Boron Nitride Coated Tools and Dies
    (Univ Maribor, Fac Mechanical Engineering, 2013) Kaftanoglu, B.; Dokmetas, N.
    Boron nitride (BN) has been utilized as a significant coating material for cutting tool applications due to its excellent mechanical and chemical properties. Cutting tools, molds and machine parts are coated with BN with the coating system using a sputtering technology - a physical vapour deposition (PVD) process. Design and manufacture of the equipment is made locally. Physical, mechanical and tribological properties such as thickness, friction coefficient, wear, and adhesion are measured by using calotest, tribometer, profilometer, micro and macro scratch test, and nanohardness devices. The results of characterization of the coatings show that wear resistance and hardness increase and BN coatings provide increased efficiency by creating a value-added manufacturing. In this case, the use of BN-coated tools in machining is expected to be one of the best solutions. (C) 2013 PEI, University of Maribor. All rights reserved.
  • Conference Object
    Citation - WoS: 94
    Citation - Scopus: 101
    Characterization of Az31 Mg Alloy Coated by Plasma Electrolytic Oxidation
    (Pergamon-elsevier Science Ltd, 2013) Durdu, Salih; Bayramoglu, Selin; Demirtas, Aysun; Usta, Metin; Ucisik, A. Hikmet
    In this study, AZ31 Mg alloy produced by twin roll casting was coated by a plasma electrolytic oxidation (PEO) in the solution, consisting of Na2SiO3 center dot 5H(2)O + KOH electrolyte at 0.085 A/cm(2) current density for 15, 30, 45 and 60 min. Thickness of the coated layer, surface morphology, phase structure, hardness, adhesion strength of the layer and wear resistance were analyzed by an eddy current, SEM, XRD, Vickers hardness, micro scratch tester and tribometer, respectively. The average coating thickness ranged from 17 to 56 mu m. A number of pores were formed on the coated layer. XRD revealed that Mg2SiO4 (Forsterite) and MgO (Periclase) phases were formed on the surface of the magnesium alloy. Average coating hardness was measured as 660 HV, while the hardness of the magnesium alloy was 72 HV. Adhesion strength of coatings was increased by increasing duration time. Wear resistances of coatings were higher than AZ31 Mg alloy. (C) 2012 Elsevier Ltd. All rights reserved.
  • Article
    Citation - Scopus: 20
    Investigation of the Tribological Behaviour of Electrocodeposited Ni-Mos2 Composite Coatings
    (Inderscience Publishers, 2017) Güler,E.S.; Konca,E.; Karakaya,I.
    Composite electroplating of solid lubricants in a metal matrix is an effective way to lower coefficient of friction (COF) and improve wear resistance of surfaces in sliding contact. In this work, Ni-MoS2 composite coatings were deposited on AISI 304 stainless steel substrates by electroplating from Watts bath containing suspended MoS2 particles and their tribological behaviour was studied. The effects of MoS2 particle concentration (5, 10 and 30 g/l), MoS2 particle size (1.440 and 5.156 μm), pH (2, 3 and 4), current density (3.8, 4.8 and 5.8 A/dm2) and the surfactant (sodium lignosulfonate, SLS) concentration (0.3 and 1 g/l) on the tribological behaviour were investigated using a ball-on-disc tribometer at ambient conditions. Lower current density, smaller particle size and higher concentration of MoS2 decreased COF. While increasing the surfactant concentration decreased the COF, its friction lowering effect was much more pronounced at relatively lower concentrations of MoS2 in the electrolyte. Copyright © 2017 Inderscience Enterprises Ltd.