Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 11
    Citation - Scopus: 14
    Tribological Behavior of Alumina-Added Apatite-Wollastonite Glass-Ceramics in Simulated Body Fluid
    (Elsevier Science Sa, 2010) Park, Jongee; You, Sang-Hee; Shin, Dong-Woo; Ozturk, Abdullah
    Tribological properties of an alumina-added apatite-wollastonite glass-ceramic produced by controlled heat treatment of a glass in the system MgO-CaO-SiO(2)-P(2)O(5)-Al(2)O(3) have been evaluated and compared with those of selected commercial dental ceramics, Duceragold and IPS Empress. Tribological tests were performed in dry condition and in simulated body fluid (SBF) using a pin-on-disk apparatus. The friction coefficient and specific wear rate of the tested materials were measured in dry and in artificial saliva (simulated body fluid: SBF) in order to elucidate the appropriateness of the alumina-added apatite-wollastonite (A-W) glass-ceramic for dental applications. Wear rate of the materials investigated varied from 0.96 x 10(-4) mm(3) N(-1) m to 41.37 x 10(-4) mm(3) N(-1) m depending on the bioenvironmental test conditions. The results of this study revealed that the alumina-added A-W glass-ceramic becomes more wear resistant as sintering temperature is increased and exhibits tribological properties similar to those of the commercial dental materials investigated. (C) 2010 Elsevier B.V. All rights reserved.
  • Conference Object
    Citation - WoS: 95
    Citation - Scopus: 101
    Characterization of Az31 Mg Alloy Coated by Plasma Electrolytic Oxidation
    (Pergamon-elsevier Science Ltd, 2013) Durdu, Salih; Bayramoglu, Selin; Demirtas, Aysun; Usta, Metin; Ucisik, A. Hikmet
    In this study, AZ31 Mg alloy produced by twin roll casting was coated by a plasma electrolytic oxidation (PEO) in the solution, consisting of Na2SiO3 center dot 5H(2)O + KOH electrolyte at 0.085 A/cm(2) current density for 15, 30, 45 and 60 min. Thickness of the coated layer, surface morphology, phase structure, hardness, adhesion strength of the layer and wear resistance were analyzed by an eddy current, SEM, XRD, Vickers hardness, micro scratch tester and tribometer, respectively. The average coating thickness ranged from 17 to 56 mu m. A number of pores were formed on the coated layer. XRD revealed that Mg2SiO4 (Forsterite) and MgO (Periclase) phases were formed on the surface of the magnesium alloy. Average coating hardness was measured as 660 HV, while the hardness of the magnesium alloy was 72 HV. Adhesion strength of coatings was increased by increasing duration time. Wear resistances of coatings were higher than AZ31 Mg alloy. (C) 2012 Elsevier Ltd. All rights reserved.