Search Results

Now showing 1 - 10 of 14
  • Article
    Citation - WoS: 2
    Citation - Scopus: 1
    Hydrogen Implantation Effects on the Electrical and Optical Properties of Inse Thin Films
    (Tubitak Scientific & Technological Research Council Turkey, 2012) Qasrawi, Atef Fayez; Ilaiwi, Khaled Faysal; Polimeni, Antonio
    The effects of hydrogen ion implantation on the structural, electrical and optical properties of amorphous InSe thin films have been investigated. X-ray diffraction analysis revealed no change in the structure of the films. An implantation of 7.3 x 10(18) ions/cm(2) decreased the electrical conductivity by three orders of magnitude at 300 K. Similarly, the conductivity activation energy, which was calculated in the temperature range of 300-420 K, decreased from 210 to 78 meV by H-ion implantation. The optical measurements showed that the direct allowed transitions energy band gap of amorphous InSe films has decreased from 1.50 to 0.97 eV by implantation. Furthermore, significant decreases in the dispersion and oscillator energy, static refractive index and static dielectric constants are also observed by hydrogen implantation.
  • Doctoral Thesis
    Mekanik ve Biyomedikal Uygulamalar için Tek ve Çok Katmanlı Filmler için Bor Nitrür Kaplamaların Geliştirilmesi
    (2021) Hacaloğlu, Tuğçe; Kaftanoğlu, Bilgin
    Bu tezde Fiziksel Buhar Büyütme (FBB) sistemi magnetron saçtırma tekniği ile Bor Nitrür Kaplamalar gerçekleştirilmiştir. Bütün kaplamalarda ana alttaş malzemesi olarak D2 çeliği kullanılmıştır. Ayrıca, FBB-magnetron saçtırma sistemine daha önce kullanılmamış, yeni geliştirilen bir teknoloji olan ilave güç kaynağı İndüktif Akuple Plazma (IAP) eklenerek BN kaplamalar yapılmıştır. Bu çalışmada kaplamalar medikal, katmanlı kaplama ve IAP kullanımını içermektedir. Farklı parametreler uygulanarak, farklı alttaşlar BN ile kaplanmıştır. Elde edilen kaplamalar sonucunda, kaplama kalınlığı, elde edilen BN filmin kristal yapısı, ince filmin nano sertliği, BN kaplama yapışkanlığı ve kaplanmış yüzeyin sürtünme katsayısı ölçülmüştür. Bu çalışmada, medikal alanda gerçekleştirilen BN kaplamaların biyofilm oluşumunu engellediği ve kemik iyileştirmesini hızlandırdığı ortaya çıkmıştır. Çok katmanlı kaplamalarda, akımsız nikel kaplamalı alüminyum alttaş üzerine yapılan BN kaplama kalınlığı en kalın kaplama olarak ölçülmüştür. IAP destekli FBB sistemi ile yapılan BN kaplamalarda ise uygulanan IAP gücü arttıkça iyonlaşma enerjisinin artırmak hedeflenmiştir. Böylece Bor Nitrür'ün diğer alotropları da optimize edilmiştir.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 18
    Fabrication of Al/Mgo and C/Mgo Tunneling Barriers for Tunable Negative Resistance and Negative Capacitance Applications
    (Elsevier Science Bv, 2013) Qasrawi, A. F.
    In this work, the design and characterization of magnesium oxide based tunneling diodes which are produced on Al and InSe films as rectifying substrates are investigated. It was found that when Al thin films are used, the device exhibit tunneling diode behavior of sharp valley at 0.15 V and peak to valley current ratio (PVCR) of 11.4. In addition, the capacitance spectra of the Al/MgO/C device show a resonance peak of negative capacitance (NC) values at 44.7 MHz. The capacitance and resistance-voltage characteristics handled at an ac signal frequency of 100 MHz reflected a build in voltage (V-bi) of 1.29 V and a negative resistance (NR) effect above 2.05 V. This device quality factor (Q)-voltage response is similar to 10(4). When the Al substrate is replaced by InSe thin film, the tunneling diode valley appeared at 1.1 V. In addition, the PVCR, NR range, NC resonance peak, Q and lib; are found to be 135, 0.94-2.24 and 39.0 MHz, similar to 10(5) and 1.34 V, respectively. Due to the wide differential negative resistance and capacitance voltage ranges and due to the response of the C/MgO/InSe/C device at 1.0 GHz, these devices appear to be suitable for applications as frequency mixers, amplifiers, and monostable-bistable circuit elements (MOBILE). (c) 2013 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Photoconductivity Kinetics in Agin5s8< Thin Films
    (Elsevier Science Sa, 2010) Qasrawi, A. F.; Kayed, T. S.; Ercan, Ismail
    The temperature (T) and illumination intensity (F) effects on the photoconductivity of as grown and heat-treated AgIn5S8 thin films has been investigated. At fixed illumination intensity, in the temperature region of 40-300K, the photocurrent (I-ph) of the films was observed to decrease with decreasing temperature. The I-ph of the as grown sample behaved abnormally in the temperature region of 170-180K. At fixed temperature and variable illumination intensity, the photocurrent of the as grown sample exhibited linear, sublinear and supralinear recombination mechanisms at 300 K and in the regions of 160-260K and 25-130 K. respectively. This behavior is attributed to the exchange of role between the linear recombination at the surface near room temperature and trapping centers in the film which become dominant as temperature decreases. Annealing the sample at 350 K for 1 h improved the characteristic curves of I-ph. The abnormality disappeared and the I-ph - T dependence is systematic. The data analysis of which revealed two recombination centers located at 66 and 16 meV. In addition, the sublinear recombination mechanism disappeared and the heat-treated films exhibited supralinear recombination in most of the studied temperature range. (C) 2010 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 10
    Temperature Effects on Optical Characteristics of Cdse Thin Films
    (Elsevier Sci Ltd, 2021) Gullu, H. H.; Isik, M.; Surucu, O.; Gasanly, N. M.; Parlak, M.
    CdSe is one of the significant members of II-VI type semiconducting family and it has a wide range of technological applications in which optoelectronic devices take a special position. The present paper reports the structural and optical characteristics of thermally evaporated CdSe thin films. XRD pattern exhibited preferential orientation along (111) plane while atomic composition analyses resulted in the ratio of Cd/Se as closer to 1.0. Temperature-dependent band gap characteristics of CdSe thin films were investigated for the first time by carrying out transmission experiments in the 10-300 K range. The analyses showed that direct band gap energy of the compound decreases from 1.750 (at 10 K) to 1.705 eV (at 300 K). Varshni model was successfully applied to the temperature-band gap energy dependency and various optical constants were determined. Raman spectrum of CdSe thin films was also presented to understand the vibrational characteristics of the compound. The present paper would provide worthwhile data to researchers especially studying on optoelectronic device applications of CdSe thin films.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 6
    Structural and Optical Properties of Thermally Evaporated Cu-Ga (cgs) Thin Films
    (Elsevier, 2018) Gullu, H. H.; Isik, M.; Gasanly, N. M.
    The structural and optical properties of thermally evaporated Cu-Ga-S (CGS) thin films were investigated by Xray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM) and optical transmittance measurements. The effect of annealing temperature on the results of applied techniques was also studied in the present paper. EDS results revealed that each of the elements, Cu, Ga and S are presented in the films and Cu and Ga concentration increases whereas S concentration decreases within the films as annealing temperature is increased. XRD pattern exhibited four diffraction peaks which are well-matched with those of tetragonal CuGaS2 compound. AFM images were recorded to get knowledge about the surface morphology and roughness of deposited thin films. Transmittance measurements were applied in the wavelength region of 300-1000 nm. Analyses of the absorption coefficient derived from transmittance data resulted in presence of three distinct transition regions in each thin films with direct transition type. Crystal-field and spin-orbit splitting energies existing due to valence band splitting were also calculated using quasicubic model.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Structural and Optical Properties of Thermally Evaporated Ga-In Thin Films
    (World Scientific Publ Co Pte Ltd, 2014) Isik, Mehmet; Gullu, Hasan Huseyin
    In this paper, structural and optical properties of Ga-In-Se (GIS) thin films deposited by thermal evaporation technique have been investigated. The effect of annealing was also studied for samples annealed at temperatures between 300 degrees C and 500 degrees C. X-ray diffraction, energy dispersive X-ray analysis and scanning electron microscopy have been used for structural characterization. It was reported that increase of annealing temperature results with better crystallization and chemical composition of the films were almost same. Optical properties of the films were studied by transmission measurements in the wavelength range of 320-1100 nm. The direct bandgap transitions with energies in the range of 1.52 eV and 1.65 eV were revealed for the investigated GIS films. Photon energy dependence of absorption coefficient showed that there exist three distinct transition regions for films annealed at 400 degrees C and 500 degrees C. The quasicubic model was applied for these transitions to calculate crystal-field splitting and spin-orbit splitting energy values.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Temperature effects on the optoelectronic properties of AgIn5S8 thin films
    (Elsevier Science Sa, 2011) Qasrawi, A. F.
    Polycrystalline AgIn5S8 thin films are obtained by the thermal evaporation of AgIn5S8 crystals onto ultrasonically cleaned glass substrates under a pressure of similar to 1.3 x 10(-3) Pa. The temperature dependence of the optical band gap and photoconductivity of these films was studied in the temperature regions of 300-450 K and 40-300 K, respectively. The heat treatment effect at annealing temperatures of 350, 450 and 550 K on the temperature dependent photoconductivity is also investigated. The absorption coefficient, which was studied in the incidence photon energy range of 1.65-2.55 eV, increased with increasing temperature. Consistently, the absorption edge shifts to lower energy values as temperature increases. The fundamental absorption edge which corresponds to a direct allowed transition energy band gap of 1.78 eV exhibited a temperature coefficient of -3.56 x 10(-4) eV/K. The 0 K energy band gap is estimated as 1.89 eV. AgIn5S8 films are observed to be photoconductive. The highest and most stable temperature invariant photocurrent was obtained at an annealing temperature of 550 K. The photoconductivity kinetics was attributed to the structural modifications caused by annealing and due to the trapping-recombination centers' exchange. (C) 2010 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 18
    Heat Treatment Effects on the Structural and Electrical Properties of Thermally Deposited Agin5s8< Thin Films
    (Pergamon-elsevier Science Ltd, 2011) Qasrawi, A. F.; Kayed, T. S.; Ercan, Filiz
    The heat treatment effects on structural and electrical properties of thermally deposited AgIn5S8 thin films have been investigated. By increasing the annealing temperature of the sample from 450 to 500 K, we observed a change in the crystallization direction from (420) to (311). Further annealing of the AgIn5S8 films at 550, 600 and 650 K resulted in larger grain size in the (311) preferred direction. The room temperature electrical resistivity, Hall coefficient and Hall mobility were significantly influenced by higher annealing temperatures. Three impurity levels at 230, 150, and 78 meV were detected for samples annealed at 350 K. The electrical resistivity decreased by four orders of magnitude when the sample annealing temperature was raised from 350 to 450 K. The temperature dependent electrical resistivity and carrier concentration of the thin film samples were studied in the temperature ranges of 25-300 K and 140-300 K, respectively. A degenerate-nondegenerate semiconductor transition at approximately 180 was observed for samples annealed at 450 and 500 K. Similar type of transition was observed at 240 K for samples annealed at 600 and 650 K. (C) 2011 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Temperature Dependent Band Gap in Sns2x< (x=0.5) Thin Films
    (Elsevier Sci Ltd, 2020) Delice, S.; Isik, M.; Gullu, H. H.; Terlemezoglu, M.; Surucu, O. Bayrakli; Gasanly, N. M.; Parlak, M.
    Structural and optical properties of SnS2xSe(2-2x) thin films grown by magnetron sputtering method were investigated for composition of x = 0.5 (SnSSe) in the present study. X-ray diffraction, energy dispersive X-ray spectroscopy, atomic force microscopy and scanning electron microscopy methods were used for structural characterization while temperature-dependent transmission measurements carried out at various temperatures in between 10 and 300 K were accomplished for optical investigations. X-ray diffraction pattern of studied composition presented peaks at positions which are between those of SnSe2 and SnS2. Transmittance spectra recorded at all applied temperatures were analyzed using well-known Tauc relation. Analyses revealed the direct band gap energy value of SnSSe thin films as 1.75 eV at room temperature. Change of band gap energy as a response to varying temperature were discussed in the study by utilizing Varshni relation. It was shown that variation of gap energy values was well-matched with the Varshni's empirical formula. Energy band gap at absolute zero and rate of change of band gap with temperature were found to be 1.783 eV and -2.1 x 10(-4) eV K-1, respectively.