3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 1Citation - Scopus: 1Structural and Optical Properties of Thermally Evaporated Ga-In Thin Films(World Scientific Publ Co Pte Ltd, 2014) Isik, Mehmet; Gullu, Hasan HuseyinIn this paper, structural and optical properties of Ga-In-Se (GIS) thin films deposited by thermal evaporation technique have been investigated. The effect of annealing was also studied for samples annealed at temperatures between 300 degrees C and 500 degrees C. X-ray diffraction, energy dispersive X-ray analysis and scanning electron microscopy have been used for structural characterization. It was reported that increase of annealing temperature results with better crystallization and chemical composition of the films were almost same. Optical properties of the films were studied by transmission measurements in the wavelength range of 320-1100 nm. The direct bandgap transitions with energies in the range of 1.52 eV and 1.65 eV were revealed for the investigated GIS films. Photon energy dependence of absorption coefficient showed that there exist three distinct transition regions for films annealed at 400 degrees C and 500 degrees C. The quasicubic model was applied for these transitions to calculate crystal-field splitting and spin-orbit splitting energy values.Article Citation - WoS: 7Citation - Scopus: 7Photoconductivity Kinetics in Agin5s8< Thin Films(Elsevier Science Sa, 2010) Qasrawi, A. F.; Kayed, T. S.; Ercan, IsmailThe temperature (T) and illumination intensity (F) effects on the photoconductivity of as grown and heat-treated AgIn5S8 thin films has been investigated. At fixed illumination intensity, in the temperature region of 40-300K, the photocurrent (I-ph) of the films was observed to decrease with decreasing temperature. The I-ph of the as grown sample behaved abnormally in the temperature region of 170-180K. At fixed temperature and variable illumination intensity, the photocurrent of the as grown sample exhibited linear, sublinear and supralinear recombination mechanisms at 300 K and in the regions of 160-260K and 25-130 K. respectively. This behavior is attributed to the exchange of role between the linear recombination at the surface near room temperature and trapping centers in the film which become dominant as temperature decreases. Annealing the sample at 350 K for 1 h improved the characteristic curves of I-ph. The abnormality disappeared and the I-ph - T dependence is systematic. The data analysis of which revealed two recombination centers located at 66 and 16 meV. In addition, the sublinear recombination mechanism disappeared and the heat-treated films exhibited supralinear recombination in most of the studied temperature range. (C) 2010 Elsevier B.V. All rights reserved.Article Citation - WoS: 5Citation - Scopus: 6Microporous vanadosilicate films with tailorable V4+/V5+ratio to achieve enhanced visible-light photocatalysis(Elsevier, 2021) Kuzyaka, Duygu; Uzun, Ceren; Yildiz, Ilker; Kaya, Murat; Akata, BurcuThis study investigates the changes induced into the photocatalytic activity under solar light irradiation upon changing the structural film properties and tailor the concentration of defects in microporous vanadosilicate AM6 films. For this purpose, the preparation of AM-6 films with different V4+/V5+ ratios and their utilization as photocatalysts for the decomposition of MB were carried out. Two approaches were used for obtaining AM-6 films with different V4+/V5+ ratios: altering the seed layer coating technique and altering the molar water content of the secondary growth gel. It was seen that dip coating method resulted in an increase in the thickness of the films and it was presumed that the adsorption of MB by AM-6 films was the predominant factor in photocatalytic activity. The second approach of increasing the molar water content of the secondary growth gel provided an increase in the defect concentration resulting in an enhanced photocatalytic activity under the solar light. In the current study, the defect concentration of the prepared films was determined by using XPS and Raman spectroscopy techniques. Accordingly, it was determined that the samples with lower amount V4+/V5+ ratio showed better photocatalytic activity under the solar light irradiation indicating that V5+ cations are responsible for the photocatalytic activity under visible light irradiation. This work provides methods of production of microporous films showing photocatalytic activity under visible light without the requirement of any post-synthesis treatments.

